【题目】已知椭圆C:
的离心率为
,椭圆的左,右焦点分别为F1,F2,点M为椭圆上的一个动点,△MF1F2面积的最大值为
,过椭圆外一点(m,0)(m>a)且倾斜角为
的直线l交椭圆于C,D两点.
(1)求椭圆的方程;
(2)若
,求m的值.
【答案】(1)
;(2)3.
【解析】
(1)根据离心率和面积联立方程解得椭圆方程.
(2)设直线方程为y
(x﹣m),联立方程根据韦达定理得到x1+x2=m,x1x2
,根据
得到(x1﹣2,y1)(x2﹣2,y2)=0,代入化简得到答案.
(1)∵离心率为
,△MF1F2面积的最大值为
,
∴
,①
,即bc=2
,②又∵b2=a2﹣c2,③
由①②③解得,a
,b
,c=2,∴椭圆方程为
.
(2)根据题意设直线l方程y﹣0=tan
(x﹣m),即y
(x﹣m),
C(x1,y1),D(x2,y2),
联立直线l与椭圆的方程得2x2﹣2mx+m2﹣6=0,
∴x1+x2=m,x1x2
,
y1y2
,
若
,则(x1﹣2,y1)(x2﹣2,y2)=0,
∴x1x2﹣2(x1+x2)+4+y1y2=0,∴
,解得m=3.
科目:高中数学 来源: 题型:
【题目】已知命题p:“曲线C1:
=1表示焦点在x轴上的椭圆”,命题q:“曲线C2:
表示双曲线”.
(1)若命题p是真命题,求m的取值范围;
(2)若p是q的必要不充分条件,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个命题:
(1)命题
,使得
,则
,都有
;
(2)已知函数f(x)=|log2x|,若a≠b,且f(a)=f(b),则ab=1;
(3)若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β;
(4)已知定义在
上的函数
满足条件
,且函数
为奇函数,则函数
的图象关于点
对称.
其中真命题的序号为______________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
.
(1)若直线
不经过第四象限,求
的取值范围;
(2)若直线
交
轴负半轴于点
,交
轴正半轴于点
,
为坐标原点,设
的面积为
,求
的最小值及此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的左、右焦点分别为
、
,点
为椭圆
上任意一点,
关于原点
的对称点为
,有
,且
的最大值
.
![]()
(1)求椭圆
的标准方程;
(2)若
是
关于
轴的对称点,设点
,连接
与椭圆
相交于点
,问直线
与
轴是否交于一定点.如果是,求出该定点坐标;如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在
实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各
株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为
及以上的花苗为优质花苗.
![]()
求图中
的值,并求综合评分的中位数.
用样本估计总体,以频率作为概率,若在
两块试验地随机抽取
棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
填写下面的列联表,并判断是否有
的把握认为优质花苗与培育方法有关.
![]()
附:下面的临界值表仅供参考.
![]()
(参考公式:
,其中
.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D为侧棱AA1的中点.
![]()
(1)求异面直线DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com