精英家教网 > 高中数学 > 题目详情

【题目】齐王与田忌赛马,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.田忌的上马优于齐王的中马,劣于齐王的上马,田忌的中马优于齐王的下马,劣于齐王的中马,田忌的下马劣于齐王的下马.现各出上、中、下三匹马分组进行比赛,如双方均不知对方马的出场顺序,则田忌获胜的概率是(
A.
B.
C.
D.

【答案】B
【解析】解:记齐王的三匹马分别为A、B、C,记田忌的三匹马分别为a、b、c.

若A与a比赛,记为Aa,齐王与田忌赛马,有如下六种情况:

Aa,Bb,Cc;Aa,Bc,Cb;Ab,Bc,Ca;Ab,Ba,Cc;Ac,Ba,Cb;Ac,Bb,Ca.

其中田忌获胜的只有一种:Ac,Ba,Cb.

∴田忌获胜的概率为

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),设函数f(x)= +λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈( ,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点( ,0)求函数f(x)在区间[0, ]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足对于任意实数a,b,c,都有f(a),f(b),f(c)为某三角形的三边长,则成f(x)为“可构造三角形函数”,已知f(x)= 是“可构造三角形函数”,则实数t的取值范围是(
A.[﹣1,0]
B.(﹣∞,0]
C.[﹣2,﹣1]
D.[﹣2,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A为椭圆 =1(a>b>0)上的一个动点,弦AB,AC分别过左右焦点F1 , F2 , 且当线段AF1的中点在y轴上时,cos∠F1AF2= . (Ⅰ)求该椭圆的离心率;
(Ⅱ)设 ,试判断λ12是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点A,B是单位圆O上的两点,A,B点分别在第一,而象限,点C是圆O与x轴正半轴的交点,若∠COA=60°,∠AOB=α,点B的坐标为(﹣ ).
(1)求sinα的值;
(2)已知动点P沿圆弧从C点到A点匀速运动需要2秒钟,求动点P从A点开始逆时针方向作圆周运动时,点P的纵坐标y关于时间t(秒)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构对中学生记忆能力x和识图能力y进行统计分析,得到如下数据:

记忆能力x

4

6

8

10

识图能力y

3

﹡﹡﹡

6

8

由于某些原因,识图能力的一个数据丢失,但已知识图能力样本平均值是5.5.
(Ⅰ)求丢失的数据;
(Ⅱ)经过分析,知道记忆能力x和识图能力y之间具有线性相关关系,请用最小二乘法求出y关于x的线性回归方程
(III)若某一学生记忆能力值为12,请你预测他的识图能力值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题: ①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F与AM的交点在y轴上;
⑤AB′与A′B交于原点.
其中真命题的是 . (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点(1,2)总可以作两条直线与圆 x2+y2+kx+2y+k2﹣15=0 相切,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆 与双曲线 有相同的焦点F1、F2 , P是两曲线的一个交点,则△F1PF2的面积是(
A.4
B.2
C.1
D.

查看答案和解析>>

同步练习册答案