精英家教网 > 高中数学 > 题目详情
(2013•温州一模)已知A(x1,y1),B(x2,y2)是抛物线y2=4x上相异两点,且满足x1+x2=2.
(Ⅰ)AB的中垂线经过点P(0,2),求直线A的方程;
(Ⅱ)AB的中垂线交x轴于点M,△AMB的面积的最大值及此时直线AB的方程.
分析:方法一:
(I)设直线AB的方程为y=kx+b,与y2=4x联立,利用韦达定理结合x1+x2=2可求得直线AB的方程为y=k(x-1)+
2
k
,而AB中点的坐标为(1,
2
k
),AB的中垂线经过点P(0,2),可求得AB的斜率,从而可求直线AB的方程;
(Ⅱ)依题意,直线AB的方程为k2x-ky+2-k2=0,利用点到直线间的距离公式可求得点M到直线AB的距离d,联立AB的方程与抛物线方程,结合韦达定理可求得|AB|,于是可得到面积表达式,通过导数法即可求得△AMB的面积的最大值及此时直线AB的方程;
法二:(Ⅰ)设AB的中点为Q(1,t),可求得kAB=
2
t
,由(t-2)•
2
t
=-1,可求得t继而可得直线AB的方程为y=
3
2
x-
1
6

(Ⅱ)依题意可得直线AB的方程,继而可求点M到直线AB的距离为d=
t2+4
t2+4
=
t2+4
,从而可得面积表达式,利用基本不等式即可求得△AMB的面积的最大值及此时直线AB的方程.
解答:解:方法一:
(I)当AB垂直于x轴时,显然不符合题意,
所以设直线AB的方程为y=kx+b,代入方程y2=4x得:k2x2+(2kb-4)x+b2=0
∴x1+x2=
4-2kb
k2
=2,…(2分)
得:b=
2
k
-k,
∴直线AB的方程为y=k(x-1)+
2
k

∵AB中点的横坐标为1,
∴AB中点的坐标为(1,
2
k
)    …(4分)
∴AB的中垂线方程为y=-
1
k
(x-1)+
2
k
=-
1
k
x+
3
k

∵AB的中垂线经过点P(0,2),故
3
k
=2,得k=
3
2
      …(6分)
∴直线AB的方程为y=
3
2
x-
1
6
,…(7分)
(Ⅱ)由(I)可知AB的中垂线方程为y=-
1
k
x+
3
k

∴M点的坐标为(3,0)…(8分)
因为直线AB的方程为k2x-ky+2-k2=0,
∴M到直线AB的距离d=
|3k2+2-k2|
k4+k2
=
2
k2+1
|k|
      …(10分)
k2x-ky+2-k2=0
y2=4x
k2
4
y2-ky+2-k2=0,
y1+y2=
4
k
,y1y2=
8-2k2
k2

|AB|=
1+
1
k2
|y1-y2|=
4
1+k2
k2-1
k2
            …(12分)
∴S△AMB=4(1+
1
k2
1-
1
k2
,设
1-
1
k2
=t,则0<t<1,
S=4t(2-t2)=-4t3+8t,S′=-12t2+8,由S′=0,得t=
6
3

即k=±
3
时Smax=
16
6
9

此时直线AB的方程为3x±
3
y-1=0.…(15分)
(本题若运用基本不等式解决,也同样给分)
法二:
(1)根据题意设AB的中点为Q(1,t),则kAB=
y2-y1
x2-x1
=
2
t
      …(2分)
由P、Q两点得AB中垂线的斜率为k=t-2,…(4分)
由(t-2)•
2
t
=-1,得t=
4
3
,…(6分)
∴直线AB的方程为y=
3
2
x-
1
6
,…(7分)
(2)由(1)知直线AB的方程为y-t=
2
t
(x-1),…(8分)
AB中垂线方程为y-t=-
t
2
(x-1),中垂线交x轴于点M(3,0),
点M到直线AB的距离为d=
t2+4
t2+4
=
t2+4
,…(10分)
y-t=
2
t
(x-1)
y2=4x
得:4x2-8x+(t2-2)2=0,
∴|AB|=
1+
4
t2
|x1-x2|=
(t2+4)(4-t2)
,x1+x2=2,x1x2=
(t2-2)2
4

∴S=
1
2
|AB|•d=
1
2
(t2+4)2(4-t2)
=
2
4
(t2+4)2(8-2t2)
2
4
(
16
3
)
3
=
16
6
9

当t2=
4
3
时,S有最大值
16
6
9
,此时直线AB方程为3x±
3
y-1=0…(15分)
点评:本题考查:直线的一般式方程,考查:直线的一般式方程与直线的垂直关系,突出考查点到直线的距离公式,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•温州一模)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC.
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)PQ⊥平面QBC,求二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)已知函数f(x)=ax2-gx(a∈R),f′(x)是f(x)的导函数(g为自然对数的底数)
(Ⅰ)解关于x的不等式:f(x)>f′(x);
(Ⅱ)若f(x)有两个极值点x1,x2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)已a,b,c分别是△AB的三个内角A,B,的对边,
2b-c
a
=
cosC
cosA

(Ⅰ)求A的大小;
(Ⅱ)求函数y=
3
sinB+sin(C-
π
6
)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)方程(x-1)•sinπx=1在(-1,3)上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC,
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若PQ⊥平面QBC,求CQ与平面PBC所成角的正弦值.

查看答案和解析>>

同步练习册答案