精英家教网 > 高中数学 > 题目详情
设点A(1,0),B(2,1),如果直线ax+by=1与线段AB有一个公共点,那么a2+b2的最小值为
1
5
1
5
分析:由题意得:点A(1,0),B(2,1)在直线ax+by=1的两侧,那么把这两个点代入ax+by-1,它们的符号相反,乘积小于等于0,即可得出关于a,b的不等关系,画出此不等关系表示的平面区域,结合线性规划思想求出a2+b2的取值范围.
解答:解:∵直线ax+by=1与线段AB有一个公共点,
∴点A(1,0),B(2,1)在直线ax+by=1的两侧,
∴(a-1)(2a+b-1)≤0,
a-1≤0
2a+b-1≥0
a-1≥0
2a+b-1≤0

画出它们表示的平面区域,如图所示.
a2+b2表示原点到区域内的点的距离的平方,
由图可知,当原点O到直线2x+y-1=0的距离为原点到区域内的点的距离的最小值,
∵d=
|-1|
4+1
1
5

那么a2+b2的最小值为:d2=
1
5

故答案为:
1
5
点评:本题考查二元一次不等式组与平面区域问题、函数的最值及其几何意义,是基础题.准确把握点与直线的位置关系,找到图中的“界”,是解决此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网幂函数y=xα,当α取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图象三等分,即有BM=MN=NA.那么,αβ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网幂函数y=xα,当α取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图象三等分,即有BM=MN=NA.那么,αβ=(  )
A、1
B、2
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)设点A(1,0),B(2,1),如果直线ax+by=1与线段AB有一个公共点,那么a2+b2(  )

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省常州市华罗庚中学高二(下)期末数学试卷(文科)(解析版) 题型:填空题

幂函数y=xα,当α取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图象三等分,即有BM=MN=NA.那么,αβ=   

查看答案和解析>>

同步练习册答案