精英家教网 > 高中数学 > 题目详情
已知x,y满足约束条件
5x+2y≤30
x≥0
y≥0
,求目标函数z=4x-y的最大值和最小值.
考点:简单线性规划
专题:数形结合
分析:由约束条件作出可行域,化目标函数为直线方程斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.
解答: 解:由约束条件
5x+2y≤30
x≥0
y≥0
作出可行域如图,
化目标函数z=4x-y为直线方程斜截式,得y=4x-z.
由图可知,当直线y=4x-z过点A(6,0)时,z有最大值,等于4×6-0=24;
当直线y=4x-z过点B(0,15)时,z有最小值,等于4×0-15=-15.
点评:本题考查了解答的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对10个接受心脏搭桥手术的病人和10个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:
又发作过心脏病未发作过心脏病合计
心脏搭桥手术3710
血管清障手术5510
合计81220
试根据上述数据计算X2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+3,-5≤x<-1
x2,-1≤x<1
x-1,1≤x<4

(1)作出函数f(x)的图象;
(2)写出函数f(x)的定义域;
(3)求出f(-2),f(0),f(f(f(-2)))的值;
(4)当x∈[-
1
2
,3]时,求出函数f(x)的值域;
(5)写出函数f(x)的单调区间,并写出哪些是递减区间,哪些是递增区间;
(6)当f(x)=-7时,求x的值,当f(x)=1时,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上奇函数g(x)与偶函数h(x),对任意x∈R满足g(x)+h(x)=sin2x+sinx+acosx.a为实数
(1)求奇函数g(x)和偶函数f(x)的表达式;
(2)若a>2,求函数h(x)在区间[
π
3
,π]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(sinx+cosx)2
1+2sin2x+sin22x

(Ⅰ)求f(
π
4
)的值;
(Ⅱ)若f(x)=2,且-
π
4
<x<
4
,求x的值;
(Ⅲ)若0<x<π,求不等式:f(x)≥4+2
3
的解集A.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线l:y=x+b与曲线C:x2=4y相切于点A.
(Ⅰ)求实数b的值;
(Ⅱ)求由曲线C与直线l及x=0围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c为角A,B,C所对的边长,z1=a+bi,z2=cos A+icos B.若复数z1•z2在复平面内对应的点在虚轴上,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.
(Ⅰ)求数列{an}的首项,并证明数列{an}为等差数列;
(Ⅱ)令bn=
an+1
an
+
an
an+1
(n∈N+),求证b1+b2+…+bn-2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=cos(2x+
π
3
).
(1)用“五点法”作出它在长度为一个周期的闭区间上的简图;(自己做出坐标系,并标出横纵坐标)
(2)求使函数y取最大值和最小值时自变量x的集合,并求出它的最大值和最小值;
(3)指出该函数的增区间和减区间.

查看答案和解析>>

同步练习册答案