精英家教网 > 高中数学 > 题目详情
已知f(x)=|x2-1|+x2+kx.
(I)若k=2,求方程f(x)=0的解;
(II)若关于x的方程f(x)=0在(0,2)上有两个解x1,x2,求k的取值范围,并证明
1
x1
+
1
x2
<4
(Ⅰ)(1)当k=2时,f(x)=|x2-1|+x2+kx
①当x2-1≥0时,即x≥1或x≤-1时,方程化为2x2+2x-1=0
解得x=
-1±
3
2
,因为0<
-1+
3
2
<1
,故舍去,所以x=
-1-
3
2

②当x2-1<0时,-1<x<1时,方程化为2x+1=0
解得x=-
1
2

由①②得当k=2时,方程f(x)=0的解所以x=
-1-
3
2
x=-
1
2

(II)不妨设0<x1<x2<2,
因为f(x)=
2x2+kx-1,|x|>1
kx+1,|x|≤1

所以f(x)在(0,1]是单调函数,故f(x)=0在(0,1]上至多一个解,
若1<x1<x2<2,则x1x2=-
1
2
<0,故不符题意,因此0<x1≤1<x2<2.
由f(x1)=0得k=-
1
x1
,所以k≤-1;
由f(x2)=0得k=
1
x2
-2x2
,所以-
7
2
<k<-1

故当-
7
2
<k<-1
时,方程f(x)=0在(0,2)上有两个解.
当0<x1≤1<x2<2时,k=-
1
x1
,2x22+kx2-1=0
消去k得2x1x22-x1-x2=0
1
x1
+
1
x2
=2x2
,因为x2<2,所以
1
x1
+
1
x2
<4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案