精英家教网 > 高中数学 > 题目详情
16.已知圆C的圆心在直线3x-y=0上,半径为1且与直线x-y=0相切,则圆C的标准方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.

分析 设圆心坐标为(a,3a),根据半径为1且与直线x-y=0相切,得到圆的半径是点到直线的距离,求出a,写出圆的标准方程.

解答 解:设圆心坐标为(a,3a),则
∵半径为1且与直线x-y=0相切,
∴圆的半径是点到直线的距离,
∴r=$\frac{|a-3a|}{\sqrt{2}}$=1,
∴a=±$\frac{\sqrt{2}}{2}$
∴圆的标准方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.
故答案为:(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.

点评 本题考查圆的标准方程,解题的关键是求出圆的半径,已知圆心和半径,则圆的标准方程可以写出,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知曲线C1:$\frac{{x}^{2}}{8-k}$-$\frac{{y}^{2}}{4}$=1与C2:$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{6-k}$=1都是双曲线,则(  )
A.0<k<8,C1与C2的实轴长相等B.k<6,C1与C2的实轴长相等
C.0<k<8,C1与C2的焦距相等D.k<6,C1与C2的焦距相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{{e}^{x}}{|x|}$,关于x的方程f2(x)+(m+1)f(x)+m+4=0(m∈R)有四个相异的实数根,则m的取值范围是(  )
A.(-4,-e-$\frac{4}{e+1}$)B.(-4,-3)C.(-e-$\frac{4}{e+1}$,-3)D.(-e-$\frac{4}{e+1}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若sinα=-$\frac{\sqrt{2}}{2}$,且α∈[0,2π],则α所有可能取得值是(  )
A.$\frac{π}{4}$,$\frac{3π}{4}$B.$\frac{3π}{4}$,$\frac{5π}{4}$C.$\frac{5π}{4}$D.$\frac{5π}{4}$,$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线mx-y-(m-4)=0(m∈R)与线段y=$\frac{4}{3}$x-4(0≤x≤3)恒有公共点,则m的取值范围是(  )
A.m≥8或m≤-2B.m≥8C.m≤-2D.-2≤x≤8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:mx+2y+6=0,向量(1-m,1)与l平行,则m的值为(  )
A.-1B.1C.2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.点P在椭圆3x2+y2=12上,OP倾斜角为60°,AB∥OP,A,B在椭圆上且都在x轴上方,求△ABP面积的最大值及此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对任意x∈R,比较x2+x+1与$\frac{3}{4}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA=AB,PA⊥平面ABCD,E,F分别是BC,PB的中点.
(1)证明:EF∥平面PCD;
(2)求EF与平面PAD所成角的正弦值.

查看答案和解析>>

同步练习册答案