分析 设圆心坐标为(a,3a),根据半径为1且与直线x-y=0相切,得到圆的半径是点到直线的距离,求出a,写出圆的标准方程.
解答 解:设圆心坐标为(a,3a),则
∵半径为1且与直线x-y=0相切,
∴圆的半径是点到直线的距离,
∴r=$\frac{|a-3a|}{\sqrt{2}}$=1,
∴a=±$\frac{\sqrt{2}}{2}$
∴圆的标准方程是(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.
故答案为:(x+$\frac{\sqrt{2}}{2}$)2+(y+$\frac{3\sqrt{2}}{2}$)2=1或(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{3\sqrt{2}}{2}$)2=1.
点评 本题考查圆的标准方程,解题的关键是求出圆的半径,已知圆心和半径,则圆的标准方程可以写出,本题是一个基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0<k<8,C1与C2的实轴长相等 | B. | k<6,C1与C2的实轴长相等 | ||
| C. | 0<k<8,C1与C2的焦距相等 | D. | k<6,C1与C2的焦距相等 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-4,-e-$\frac{4}{e+1}$) | B. | (-4,-3) | C. | (-e-$\frac{4}{e+1}$,-3) | D. | (-e-$\frac{4}{e+1}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$,$\frac{3π}{4}$ | B. | $\frac{3π}{4}$,$\frac{5π}{4}$ | C. | $\frac{5π}{4}$ | D. | $\frac{5π}{4}$,$\frac{7π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m≥8或m≤-2 | B. | m≥8 | C. | m≤-2 | D. | -2≤x≤8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com