精英家教网 > 高中数学 > 题目详情
已知向量
p
=(an,2n),
q
=(2n+1,-an+1),n∈N*,向量
p
 与
q
 垂直,且a1=1
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an•bn}的前n项和Sn
(1)∵向量
p
 与
q
 垂直,∴2nan+1-2n+1an=0,
 即2nan+1=2n+1an,…(2分)
an+1
an
=2∴{an}是以1为首项,2为公比的等比数列…(4分)
∴an=2n-1.        …(5分)
(2)∵bn=log2a2+1,∴bn=n
∴an•bn=n•2n-1,…(8分)
∴Sn=1+2×2+3×22+…+(n-1)×2n-2+n×2n-1    …①
∴2Sn=1×2+2×22+…(n-1)×2n-1+n×2n   …②…(10分)
由①-②得,-Sn=1+2+22+…+2n-1-n×2n=
1-2n
1-2
-n•2n
=(1-n)•2n=(1-n)2n-1…(12分)
∴Sn=1-(n+1)2n+n•2n+1=1+(n-1)•2n.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
p
=(an,n)
q
=(an+1,n+1)
,(n∈N*),若a1=2,且
p
q
,则数列{an}的前n项和Sn=(  )
A、2n2+2n
B、n2+n
C、n2+n-1
D、
(n+1)2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
=(anmn),
q
=(an+1mn+1),n∈N*,m
为正常数,向量
p
q
,且a1=1.则数列{an}的通项公式为
an=mn-1
an=mn-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)已知向量
p
=(an,2n),
q
=(2n+1,-an+1),n∈N*,向量
p
 与
q
 垂直,且a1=1
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海交大附中高三数学理总复习二数列的综合应用练习卷(解析版) 题型:解答题

已知向量p=(an,2n),向量q=(2n1,-an1),n∈N*,向量p与q垂直,且a1=1.

(1)求数列{an}的通项公式;

(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.

 

查看答案和解析>>

同步练习册答案