精英家教网 > 高中数学 > 题目详情
1.设函数${f_0}(x)={({\frac{1}{2}})^{|x|}}$,${f_1}(x)=|{{f_0}(x)-\frac{1}{2}}|$,${f_n}(x)=|{{f_{n-1}}(x)-{{({\frac{1}{2}})}^n}}|$,则方程${f_n}(x)={({\frac{1}{n+2}})^n}$有2n+1个实数根.

分析 分别n=1,2,3,再归纳法即可求出答案.

解答 解:当n=1时,f1(x)=|($\frac{1}{2}$)|x|-$\frac{1}{2}$|=$\frac{1}{3}$,即当-1≤x≤1时,($\frac{1}{2}$)|x|=$\frac{5}{6}$,或x<-1或x>1时,($\frac{1}{2}$)|x|=$\frac{1}{6}$,此时方程有22个解,
当n=2时,f2(x)=|f1(x)-$\frac{1}{4}$|=$\frac{1}{16}$,即f1(x)=$\frac{5}{16}$,f1(x)=$\frac{3}{16}$,此时方程有23个解,
当n=3时,f3(x)=|f2(x)-$\frac{1}{8}$|=$\frac{1}{125}$,即f2(x)=$\frac{133}{1000}$,f2(x)=$\frac{117}{1000}$,此时方程有24个解,
依此类推,方程${f_n}(x)={({\frac{1}{n+2}})^n}$有2n+1个解.
故答案为:2n+1

点评 本题主要考查方程的根的存在性及个数判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知直线y=x+b与椭圆$\frac{{x}^{2}}{2}$+y2=1相交于A,B两个不同的点.
(1)求实数b的取值范围;
(2)已知弦AB的中点P的横坐标是$-\frac{2}{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列语句:
①若a,b∈R+,a≠b,则a3+b3>a2b+ab2
②若a,b,m∈R+,a<b,则$\frac{a+m}{b+m}$<$\frac{a}{b}$;
③命题:若x2=1,则x=1或x=-1的逆否命题为:若x≠1且x≠-1,则x2≠1.
④当x∈(0,$\frac{π}{2}$)时,sin x+$\frac{2}{sinx}$的最小值为2$\sqrt{2}$,
其中结论正确的序号为①③(填入所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC的三顶点分别为A(1,4,1),B(1,2,3),C(2,3,1).则AB边上的高等于(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{6}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?x>0,都有x≥1”的否定为?x>0,使得x<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若f(x)是定义域为R,最小正周期$\frac{3π}{2}$的函数,若f(x)=sinx,x∈[0,π],则f($\frac{15π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>1}
(Ⅰ)若a=0,求A∩B;
(Ⅱ)若A∪B=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个命题:
①函数y=|x|与函数y=($\sqrt{x}$)2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1,F2,若在双曲线C的下支上存在一点P使得|PF1|=4|PF2|,则双曲线C的离心率的取值范围为(  )
A.[$\frac{4}{3}$,+∞)B.(1,$\frac{4}{3}$]C.[$\frac{5}{3}$,+∞)D.(1,$\frac{5}{3}$]

查看答案和解析>>

同步练习册答案