精英家教网 > 高中数学 > 题目详情
已知△ABC中,若sinA(cosB+cosC)=sinB+sinC,则△ABC是(  )
分析:利用内角和定理及诱导公式得到sinA=sin(B+C),代入已知等式,利用两角和与差的正弦函数公式化简,再利用多项式乘以多项式法则计算,整理后利用同角三角函数间的基本关系变形,再利用两角和与差的余弦函数公式化简后,得到B+C=90°,即可确定出三角形的形状.
解答:解:sinA(cosB+cosC)=sinB+sinC,
变形得:sin(B+C)(cosB+cosC)=sinB+sinC,
即(sinBcosC+cosBsinC)(cosB+cosC)=sinB+sinC,
展开得:sinBcosBcosC+sinCcos2B+sinBcos2C+sinCcosCcosB=sinB+sinC,
sinBcosBcosC+sinCcosCcosB=sinB(1-cos2C)+sinC(1-cos2B),
cosBcosC(sinB+sinC)=sinBsin2C+sinCsin2B,即cosBcosC(sinB+sinC)=sinBsinC(sinB+sinC),
∵sinB+sinC≠0,
∴cosBcosC=sinBsinC,
整理得:cosBcosC-sinBsinC=0,即cos(B+C)=0,
∴B+C=90°,
则△ABC为直角三角形.
故选A
点评:此题考查了两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,角A、B、C所对的边分别为a、b、c.若a=1,∠B=45°,△ABC的面积S=2,那么△ABC的外接圆的直径等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a、b、c分别是三个内角A、B、C的对边,关于x的不等式x2cosC+4xsinC+6<0的解集是空集
(Ⅰ)求角C的最大值;
(Ⅱ)若c=
7
2
,△ABC的面积S=
3
2
3
,求当角C取最大值时a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C所对的边分别是a,b,c,若△ABC的面积为S=
14
(a2+b2-c2)
,则∠C的度数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知△ABC中,a、b、c分别为角A、B、C的对边长,S表示该三角形的面积,且2cos2B=cos2B+2cosB.
(1)求角B的大小;
(2)若a=2,S=2
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,错误命题的序号是
(1)(2)(4)
(1)(2)(4)

(1)已知△ABC中,a>b?A>B?sinA>sinB.
(2)已知△ABC中,a=3,b=5,c=7,S△ABC=
15
3
4

(3)已知数列{an}中,a1=1,an+1=2an+1,则其前5项的和为31.
(4)若数列{an}的前n项和为Sn=2an-1,则an=2n,n∈N*

查看答案和解析>>

同步练习册答案