分析 由题意得$\left\{\begin{array}{l}{6-a=3}\\{3b-1=5}\end{array}\right.$,解得M=$[\begin{array}{l}{2}&{3}\\{2}&{1}\end{array}]$,由此能求出矩阵M的特征值.
解答 解:由题意得:$[\begin{array}{l}{2}&{a}\\{b}&{1}\end{array}]$$[\begin{array}{l}{3}\\{-1}\end{array}]$=$[\begin{array}{l}{6-a}\\{3b-1}\end{array}]$=$[\begin{array}{l}{3}\\{5}\end{array}]$,
∴$\left\{\begin{array}{l}{6-a=3}\\{3b-1=5}\end{array}\right.$,解得a=3,b=2.∴M=$[\begin{array}{l}{2}&{3}\\{2}&{1}\end{array}]$,
设矩阵M的特征值为λ,
则f(λ)=$|\begin{array}{l}{2-λ}&{3}\\{2}&{1-λ}\end{array}|$=0,化为(2-λ)(1-λ)-6=0,
化为λ2-3λ-4=0,
解得λ1=-1,λ2=4.
点评 本题考查矩阵的特征值的求法,是中档题,解题时要认真审题,注意矩阵运算法则的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b=$\frac{1}{2}$且f(a)>f($\frac{1}{a}$) | B. | b=-$\frac{1}{2}$且f(a)<f($\frac{1}{a}$) | ||
| C. | b=$\frac{1}{2}$且f(a+$\frac{1}{a}$)>f($\frac{1}{b}$) | D. | b=-$\frac{1}{2}$且f(a+$\frac{1}{a}$)<f($\frac{1}{b}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 50 | 60 | 70 | 80 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com