精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系中,一束光线从点M(-2,3)出发,被直线y=x-1反射后到达点N(1,6),则这束光线从M到N所经过的路程为(  )
A.10$\sqrt{3}$B.3$\sqrt{10}$C.2$\sqrt{10}$D.3$\sqrt{2}$

分析 求出M关于直线y=x-1的对称点,根据对称性得到M到N的路程即PN的长.

解答 解:如图示:

设M(-2,3)关于直线y=x-1的对称点P(a,b),
则$\left\{\begin{array}{l}{\frac{b+3}{2}=\frac{a-2}{2}-1}\\{\frac{b-3}{a+2}=-1}\end{array}\right.$,解得P(4,-3),
由题意得MQ+NQ=PN,
∴PN=$\sqrt{{(4-1)}^{2}{+(-3-6)}^{2}}$=3$\sqrt{10}$,
故选:B.

点评 本题考查了对称性问题,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求直线y=-$\sqrt{3}$(x-2)绕点(2,0)按逆时针方向旋转30°所得的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式-x2+6x-8>0的解集为(  )
A.{x|-4<x<-2}B.{x|2<x<4}C.{x|x<2或x>4}D.{x|x<-4或x>-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线l1过点P(-1,2),斜率为-$\frac{\sqrt{3}}{3}$,把l1绕点P按顺时针方向旋转30°角得直线l2,求直线l1和l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若y=f(x)的图象如图所示,定义F(x)=$\int_0^x{f(t)dt$,x∈[0,1],则下列对F(x)的性质描述正确的有(1)(2)(4).(把所有正确的序号都填上)
(1)F(x)是[0,1]上的增函数;
(2)F′(1)=0;
(3)F(x)是[0,1]上的减函数;
(4)?x0∈[0,1]使得F(1)=f(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a,b,c分别是角A,B,C的对边,已知(a-3b)cosC=c(3cosB-cosA).
(1)求$\frac{sinB}{sinA}$的值;
(2)若c=$\sqrt{7}$a,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于函数f(x)=$\sqrt{a{x}^{2}+bx}$,其中b>0,若f(x)的定义域与值域相同,则非零实数a的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|log2x>1},B={x|$\frac{3}{x+1}$<1},则x∈A是x∈B的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆锥的高为h,底半径为r,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式.
[提示:(1)用若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;
(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为$\frac{h}{n}$,底半径顺次为:$\frac{r}{n}$,$\frac{2r}{n}$,$\frac{3r}{n}$…,$\frac{(n-1)r}{n}$,r;
(3)问题归结为计算和式V(n)=$\frac{h}{n}$×(12+22+…+n2)×$\frac{π{r}^{2}}{{n}^{2}}$,当n越来越大时所趋向的值.].

查看答案和解析>>

同步练习册答案