精英家教网 > 高中数学 > 题目详情
7.已知集合A={x|log2x>1},B={x|$\frac{3}{x+1}$<1},则x∈A是x∈B的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由log2x>1,利用对数的运算性质可得x>2.由$\frac{3}{x+1}$<1,化为:$\frac{x-2}{x+1}$>0,即(x+1)(x-2)>0,解出即可判断出结论.

解答 解:由log2x>1,解得x>2.
由$\frac{3}{x+1}$<1,化为:$\frac{x-2}{x+1}$>0,即(x+1)(x-2)>0,解得x>2或x<-1.
则x∈A是x∈B的充分不必要条件.
故选:A.

点评 本题考查了函数的性质、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow a=(cosx,-2),\overrightarrow b=(sinx,1)$且$\overrightarrow a$∥$\overrightarrow b$,则sin2x=(  )
A.$-\frac{4}{5}$B.-3C.3D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系中,一束光线从点M(-2,3)出发,被直线y=x-1反射后到达点N(1,6),则这束光线从M到N所经过的路程为(  )
A.10$\sqrt{3}$B.3$\sqrt{10}$C.2$\sqrt{10}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.构造如图所示的数表,规则如下:先排两个1作为第一层,然后在每一层的相邻两个数之间插入这两个数和的a倍得下一层,其中a>0,设n层中有an个数,这an个数的和为Sn(n∈N*).
(1)求an
(2)求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△OAB的顶点坐标为O(0,0),A(2,1),B(4,-3),且$\overrightarrow{AP}$=$λ\overrightarrow{PB}$,点Q是直线OB上一点.
(1)若λ=1,且$\overrightarrow{PQ}$$•\overrightarrow{OP}$=0,求点Q的坐标;
(2)如已知点M(3,2),向量$\overrightarrow{OP}$与$\overrightarrow{OM}$夹角为锐角,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=$\frac{4sinxcosx}{2sinx+2cosx+1}$,x∈(0,$\frac{π}{2}$).
(1)令t=sinx+cosx,可将已知三角函数关系y=f(x)转换成代数函数关系y=g(t),试写出函数y=g(t)的表达式及定义域;
(2)求函数y=f(x)的最大值;
(3)函数y=f(x)在区间(0,$\frac{π}{2}$)内是单调函数吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知角α终边上有一点P到原点的距离为4,α=60°,则点P的坐标是(2,2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=|{\frac{1}{2}x+1}|+|{x-1}|(x∈R)$的最小值为a.
(1)求a;
(2)已知两个正数m,n满足m2+n2=a,求$\frac{1}{m}+\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,长轴长为等于圆R:x2+(y-2)2=4的直径,过点P(0,1)的直线l与椭圆C交于两点A,B,与圆R交于两点M,N
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线RA,RB的斜率之和等于零;
(Ⅲ)求|AB|•|MN|的取值范围.

查看答案和解析>>

同步练习册答案