精英家教网 > 高中数学 > 题目详情
17.已知$\overrightarrow a=(cosx,-2),\overrightarrow b=(sinx,1)$且$\overrightarrow a$∥$\overrightarrow b$,则sin2x=(  )
A.$-\frac{4}{5}$B.-3C.3D.$\frac{4}{5}$

分析 利用向量共线定理、同角三角函数基本关系式即可得出.

解答 解:∵$\overrightarrow a$∥$\overrightarrow b$,
∴cosx+2sinx=0,
∴tanx=-$\frac{1}{2}$.
则sin2x=$\frac{2sinxcosx}{si{n}^{2}x+co{s}^{2}x}$=$\frac{2tanx}{ta{n}^{2}x+1}$=$\frac{2×(-\frac{1}{2})}{(-\frac{1}{2})^{2}+1}$=-$\frac{4}{5}$,
故选:A.

点评 本题考查了向量共线定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知点P在边长为2的正方形ABCD边界上运动,点M在以P为圆心,1为半径的圆上运动,则$\overrightarrow{MA}$•$\overrightarrow{MC}$的最大值为1+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求直线y=-$\sqrt{3}$(x-2)绕点(2,0)按逆时针方向旋转30°所得的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合A={x||x|<2,x∈R},B={x|x2-4x+3≥0,x∈R},则A∩B=(-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既不是奇函数,也不是偶函数的是(  )
A.$y=\frac{1}{x}+sinx$B.$y=\frac{sinx}{x}$C.$y=\frac{1}{x}+cosx$D.$y=\frac{cosx}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式-x2+6x-8>0的解集为(  )
A.{x|-4<x<-2}B.{x|2<x<4}C.{x|x<2或x>4}D.{x|x<-4或x>-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.直线l1过点P(-1,2),斜率为-$\frac{\sqrt{3}}{3}$,把l1绕点P按顺时针方向旋转30°角得直线l2,求直线l1和l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|log2x>1},B={x|$\frac{3}{x+1}$<1},则x∈A是x∈B的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案