精英家教网 > 高中数学 > 题目详情

已知函数f(x)=+3-ax.
(1)若f(x)在x=0处取得极值,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≥+ax+1在x≥时恒成立,试求实数a的取值范围.

(Ⅰ);(II)的取值范围是.

解析试题分析:(Ⅰ)由题可知,函数的导函数在处函数值为零,故可求得的值,故而得到函数的解析式,然后利用导数求出(1,f(1))的斜率,利用点斜式写出切线方程;(II)由(Ⅰ)已知了函数解析式,将给出的不等式分离参数,构造函数求出参数的范围.
试题解析:(Ⅰ), ∵处取得极值,
,       2分
  4分
曲线在点处的切线方程为:
.       5分
(II)由,得
,∵,∴,      7分
, 则.     8分
,则
,∴,∴上单调递增,      10分
,因此,故上单调递增,
,∴
的取值范围是.     12分
考点:导数的几何意义、直线方程、分离参数法、利用导数求函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于[1,2],
[0,1],使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(其中常数).
(1)当时,求的极大值;
(2)试讨论在区间上的单调性;
(3)当时,曲线上总存在相异两点,使得曲线
在点处的切线互相平行,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;
(Ⅱ)若函数的极小值大于零,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数试讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)求函数的极值;
(Ⅲ)对恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若函数的值域为.求关于的不等式的解集;
(Ⅱ)当时,为常数,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数的两个极值点,其中
(Ⅰ) 求的取值范围;
(Ⅱ) 若,求的最大值(e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1设
(1)当时,求f(x)的单调区间;
(2)求f(x)的零点个数

查看答案和解析>>

同步练习册答案