精英家教网 > 高中数学 > 题目详情
2.用辗转相除法求8251与6105的最大公约数(  )
A.36B.37C.38D.39

分析 根据辗转相除法的运算原则,结合8251=6105×1+2146,6105=2146×2+1813,2146=1813×1+333,1813=333×5+148,333=148×2+37,148=37×4,+0,此时余数为0,除数即为两个数的最大公约数,可得答案;

解答 解:8251=6105×1+2146,
6105=2146×2+1813,
2146=1813×1+333,
1813=333×5+148,
333=148×2+37,
148=37×4,
故8251与6105的最大公约数为37,
故选:B

点评 本题考查的知识点是辗转相除法和更相减损术,熟练掌握辗转相除法和更相减损术求最大公约数的方法和步骤是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知锐角△ABC中内角A,B,C所对的边分别是a,b,c,且满足$\sqrt{3}$a=2bsinA.
(1)求角B的大小;
(2)若b=$\sqrt{7}$,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知(1+m$\sqrt{x}$)n(m∈R+)展开式的二项式系数之和为256,展开式中含x项的系数为112.
(1)求m、n的值;
(2)求(1+m$\sqrt{x}$)n(1-x)展开式中含x2项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在(1,+∞)上的函数f(x)同时满足:
①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;
②当x∈(1,3]时,f(x)=3-x.
记函数g(x)=f(x)-k(x-1),若函数g(x)恰好有两个零点,则实数k的取值范围是(  )
A.(2,3)B.[2,3)C.$({\frac{9}{4},3})$D.$[{\frac{9}{4},3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3-3x2+2,函数g(x)=$\left\{\begin{array}{l}{-(x+3)^{2}+1,x<0}\\{(x-\frac{1}{2})^{2}+1,x≥0}\end{array}\right.$,则关于x的方程g[f(x)]-a=0(a>0)的实根个数取得最大值时,实数a的取值范围是(  )
A.(1,$\frac{5}{4}$]B.(1,$\frac{5}{4}$)C.[1,$\frac{5}{4}$]D.[0,$\frac{5}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若数列An:a1、a2、…an(n≥2)满足|ak+1-ak|=d>0(k=1,2,…,n-1),则称An为F数列:
(1)写出所有满足a1=a5=0的两个F数列A5
(2)若a1=d=1,n=2016,证明:F数列是递增数列的充要条件是an=2016;
(3)记S(An)=a1+a2+…+an,对任意给定的正整数n(n≥2),且d∈N*,是否存在a1=0的F数列An,使得S(An)=0?如果存在,求出正整数n满足的条件,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点A的极坐标为(4,$\frac{5π}{3}$),则点A的直角坐标是(2,-2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b为实数,f(x)=a•$\sqrt{{x}^{2}+1}$+x2+2bx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则a+b的取值范围为[0,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知Sn为数列{an}的前n项和,a1=1,2Sn=(n+1)an,若存在唯一的正整数n使得不等式an2-tan-2≤0成立,则实数t的取值范围为[-1,1).

查看答案和解析>>

同步练习册答案