精英家教网 > 高中数学 > 题目详情
19.若向量$\overline{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|≤2,且|$\overrightarrow{a}-2\overrightarrow{b}$|=$\sqrt{21}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值为$\sqrt{39}$.

分析 利用向量的平方等于模的平方,求出$\overrightarrow{a}•\overrightarrow{b}$的最大值,进一步对|$\overrightarrow{a}$+$\overrightarrow{b}$|平方求最大值.

解答 解:因为|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|≤2,且|$\overrightarrow{a}-2\overrightarrow{b}$|=$\sqrt{21}$,得到${\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}-4\overrightarrow{a}•\overrightarrow{b}=21$,所以$\overrightarrow{a}•\overrightarrow{b}≤5$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|2=${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}$≤39,
所以|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值为$\sqrt{39}$;
故答案为:$\sqrt{39}$.

点评 本题考查了平面向量运算、向量的模的平方与向量平方的关系运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知实数x,y满足方程x2+y2-4x+1=0,求:
(1)$\frac{y}{x}$的最大值和最小值;
(2)y-x的最小值;
(3)x2+y2的最大值和最小值;
(4)2x2+y2-4x-6的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法错误的是 (  )
A.平面直角坐标系内,每一条直线都有一个确定的倾斜角
B.每一条直线的斜率都是一个确定的值
C.没有斜率的直线是存在的
D.同一直线的斜率与倾斜角不是一一对应的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知指数函数y=g(x)满足g(-3)=$\frac{1}{8}$,定义域为R的函数f(x)=$\frac{g(x)-1}{g(x)+m}$是奇函数.
(1)求f(x)的解析式;
(2)判断f(x)的定义域上的单调性,并求函数的值域;
(3)若不等式:t•f(x)≤2x-2在(0,1]有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知:$\overrightarrow{AB}$=(6,1),$\overrightarrow{BC}$=(4,k),$\overrightarrow{CD}$=(2,1),若A,C,D三点共线,则k=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|1≤x≤4},集合B={x|x2-x+k-k2<0}.若B⊆A,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一线段的一个端点是(5,7),中点是(6,4),求另一个端点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC中,3$\overrightarrow{CD}$=$\overrightarrow{CB}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知半径为2的扇形AOB圆心角为$\frac{π}{3}$,其内接矩形MNPQ如图所示,求矩形面积最大值.

查看答案和解析>>

同步练习册答案