精英家教网 > 高中数学 > 题目详情
(2012•深圳一模)如图,直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=
2
,E为CD的中点,将△BCE沿BE折起,使得CO⊥DE,其中点O在线段DE内.
(1)求证:CO⊥平面ABED;
(2)问∠CEO(记为θ)多大时,三棱锥C-AOE的体积最大?最大值为多少?
分析:(1)通过证明BE⊥DE,BE⊥CE,CE∩DE=E,利用在与平面垂直的判定定理证明CO⊥平面ABED;
(2)利用∠CEO=θ,表示三棱锥C-AOE的体积的表达式,利用二倍角的正弦函数,通过角的我求出表达式的最大值.
解答:解:(1)证明:在直角梯形ABCD中,
CD=2AB,E为CD的中点,
则AB=DE,又AB∥DE,
AD⊥AB,知BE⊥ED.…(1分)
在四棱锥C-ABED中,BE⊥DE,BE⊥CE,CE∩DE=E,
CE,DE?平面CDE,则BE⊥平面CDE.…(3分)
因为CO?平面CDE,所以BE⊥CO…(4分)
又CO⊥DE,且BE,DE是平面ABDE内两条相交直线,…(6分)
故CO⊥平面ABED.…(7分)
(2)解:由(1)知CO⊥平面ABED,
知三棱锥C-AOE的体积V=
1
3
S△AOE•OC=
1
3
×
1
2
×OE×AD×OC
…(9分)
由直角梯形ABCD中,CD=2AB=4,AD=
2
,CE=2,
得三棱锥C-AOE中,
OE=CEcosθ=2cosθ,OC=CEsinθ=2sinθ…(10分)
V=
2
3
sin2θ≤
2
3
,…(11分)
当且仅当sin2θ=1,θ∈(0,
π
2
)
,即θ=
π
4
时取等号,…(12分)
(此时OE=
2
<DE,O落在线段DE内).
故当θ=
π
4
时,三棱锥C-AOE的体积最大,最大值为
2
3
.…(13分)
点评:本题主要考察空间点、线、面位置关系,棱锥的体积及三角函数等基础知识,考查空间想象能力、运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳一模)随机调查某社区80个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别有关系,得到下面的数据表:
休闲方式
性别
看电视 看书 合计
10 50 60
10 10 20
合计 20 60 80
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
参考数据:
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知点P(x,y)在不等式组
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面区域上运动,则z=x-y的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知等比数列{an}的第5项是二项式(
x
-
1
3x
)6
展开式的常数项,则a3a7=
25
9
25
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)如图,平行四边形ABCD中,AB⊥BD,AB=2,BD=
2
,沿BD将△BCD折起,使二面角A-BD-C是大小为锐角α的二面角,设C在平面ABD上的射影为O.

(1)当α为何值时,三棱锥C-OAD的体积最大?最大值为多少?
(2)当AD⊥BC时,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知数列{an}满足:a1=
1
2
an+1=
an
enan+e
,n∈N*
(其中e为自然对数的底数).
(1)求数列{an}的通项an
(2)设Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求证:Sn
n
n+1
Tne-n2

查看答案和解析>>

同步练习册答案