Å×ÎïÏßC1£ºy2=4mx£¨m£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚF1£¬½¹µãΪF2£¬ÒÔF1¡¢F2Ϊ½¹µã¡¢ÀëÐÄÂÊe=
1
2
µÄÍÖÔ²C2ÓëÅ×ÎïÏßC1µÄÒ»¸ö½»µãΪP£®
£¨1£©µ±m=1ʱÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö±ÏßL¾­¹ýÍÖÔ²C2µÄÓÒ½¹µãF2ÓëÅ×ÎïÏßL1½»ÓÚA1£¬A2Á½µã£®Èç¹ûÏÒ³¤|A1A2|µÈÓÚ¡÷PF1F2µÄÖܳ¤£¬ÇóÖ±ÏßLµÄбÂÊ£»
£¨3£©ÊÇ·ñ´æÔÚʵÊým£¬Ê¹¡÷PF1F2µÄ±ß³¤ÊÇÁ¬ÐøµÄ×ÔÈ»Êý£®
£¨1£©m=1ʱ£¬Å×ÎïÏßC1£ºy2=4x£¬½¹µãΪF2 £¨1£¬0£©£® ÓÉÓÚÍÖÔ²ÀëÐÄÂÊe=
1
2
£¬c=1£¬
¹Ê a=2£¬b=
3
£¬¹ÊËùÇóµÄÍÖÔ²·½³ÌΪ  
x2
4
+
y2
3
=1
£®
£¨2£©ÓÉÓÚ¡÷PF1F2Öܳ¤Îª 2a+2c=6£¬¹ÊÏÒ³¤|A1A2|=6£¬ÉèÖ±ÏßLµÄбÂÊΪk£¬ÔòÖ±ÏßLµÄ·½³ÌΪ y-0=k£¨x-2£©£¬
´úÈëÅ×ÎïÏßC1£ºy2=4x »¯¼òµÃ k2x2-£¨4k2+4£©x+4k2=0£¬¡àx1+x2= 4+
4
k2
£¬x1x2=4£¬
¡à|A1A2|=
1+k2
(x1+x2)2- 4x1x2
=
1+k2
 
( 4+
4
k2
)
2
-4¡Á4
=6£¬½âµÃ  K=¡À
2
£®
£¨3£©¼ÙÉè´æÔÚʵÊým£¬¡÷PF1F2µÄ±ß³¤ÊÇÁ¬Ðø×ÔÈ»Êý£¬¾­·ÖÎöÔÚ¡÷PF1F2ÖÐ|PF1|×£¬|PF2|×î¶Ì£¬Áî|F1F2|=2c=2m£¬
Ôò|PF1|=2m+1£¬|PF2|=2m-1£® ÓÉÅ×ÎïÏߵĶ¨Òå¿ÉµÃ|PF2|=2m-1=xP-£¨-m£©£¬¡àxP=m-1£®
°ÑP(m-1£¬
4m(m-1)
)
´úÈëÍÖÔ²
x2
4m2
+
y2
3m2
=1
£¬½âµÃm=3£®¹Ê´æÔÚʵÊým=3 Âú×ãÌõ¼þ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC1£ºy2=4ax£¨a£¾0£©£¬ÍÖÔ²CÒÔÔ­µãΪÖÐÐÄ£¬ÒÔÅ×ÎïÏßC1µÄ½¹µãΪÓÒ½¹µã£¬ÇÒ³¤ÖáÓë¶ÌÖáÖ®±ÈΪ
2
£¬¹ýÅ×ÎïÏßC1µÄ½¹µãF×÷Çãб½ÇΪ
¦Ð
4
µÄÖ±Ïßl£¬½»ÍÖÔ²CÓÚÒ»µãP£¨µãPÔÚxÖáÉÏ·½£©£¬½»Å×ÎïÏßC1ÓÚÒ»µãQ£¨µãQÔÚxÖáÏ·½£©£®
£¨1£©ÇóµãPºÍQµÄ×ø±ê£»
£¨2£©½«µãQÑØÖ±ÏßlÏòÉÏÒƶ¯µ½µãQ¡ä£¬Ê¹|QQ¡ä|=4a£¬Çó¹ýPºÍQ¡äÇÒÖÐÐÄÔÚÔ­µã£¬¶Ô³ÆÖáÊÇ×ø±êÖáµÄË«ÇúÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºy2=4£¨x-1£©£¬ÍÖÔ²C1µÄ×󽹵㼰×ó×¼ÏßÓëÅ×ÎïÏßCµÄ½¹µãFºÍ×¼Ïßl·Ö±ðÖغϣ®
£¨1£©ÉèBÊÇÍÖÔ²C1¶ÌÖáµÄÒ»¸ö¶Ëµã£¬Ï߶ÎBFµÄÖеãΪP£¬ÇóµãPµÄ¹ì¼£C2µÄ·½³Ì£»
£¨2£©Èç¹ûÖ±Ïßx+y=mÓëÇúÏßC2ÏཻÓÚ²»Í¬Á½µãM¡¢N£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC1£ºy2=4xµÄ½¹µãÓëÍÖÔ²C2£º
x2
9
+
y2
b
=1
µÄÓÒ½¹µãF2Öغϣ¬F1ÊÇÍÖÔ²µÄ×󽹵㣮
£¨1£©ÔÚ¡÷ABCÖУ¬ÈôA£¨-4£¬0£©£¬B£¨0£¬-3£©£¬µãCÔÚÅ×ÎïÏßy2=4xÉÏÔ˶¯£¬Çó¡÷ABCÖØÐÄGµÄ¹ì¼£·½³Ì£»
£¨2£©ÈôPÊÇÅ×ÎïÏßC1ÓëÍÖÔ²C2µÄÒ»¸ö¹«¹²µã£¬ÇÒ¡ÏPF1F2=¦Á£¬¡ÏPF2F1=¦Â£¬Çócos¦Á•cos¦ÂµÄÖµ¼°¡÷PF1F2µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÎÄ¿Æ×ö£¨1£©£¨2£©£¨4£©£¬Àí¿ÆÈ«×ö£©
ÒÑÖª¹ýÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©½¹µãFµÄÖ±Ïß½»Å×ÎïÏßÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã 
£¨1£©Ö¤Ã÷£ºy1y2=-p2ÇÒ£¨y1+y2£©2=2p£¨x1+x2-p£©£»
£¨2£©µãQΪÏ߶ÎABµÄÖе㣬ÇóµãQµÄ¹ì¼£·½³Ì£»
£¨3£©Èôx1=1£¬x2=4£¬ÒÔ×ø±êÖáΪ¶Ô³ÆÖáµÄÍÖÔ²»òË«ÇúÏßC2¹ýA¡¢BÁ½µã£¬ÇóÇúÏßC1ºÍC2µÄ·½³Ì£»
£¨4£©ÔÚ£¨3£©µÄÌõ¼þÏ£¬ÈôÇúÏßC2µÄÁ½½¹µã·Ö±ðΪF1¡¢F2£¬Ï߶ÎABÉÏÓÐÁ½µãC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¨x3£¼x4£©£¬Âú×㣺¢ÙS¡÷F1F2A-S¡÷F1F2C=S¡÷F1F2D-S¡÷F1F2B£¬¢ÚAB=3CD£®ÔÚÏ߶ÎF1 F2ÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹PD=
11
£¬Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2003•¶«³ÇÇø¶þÄ££©ÒÑÖªÅ×ÎïÏßC1£ºy2=4ax£¨a£¾0£©£¬ÍÖÔ²CÒÔÔ­µãΪÖÐÐÄ£¬ÒÔÅ×ÎïÏßC1µÄ½¹µãΪÓÒ½¹µã£¬ÇÒ³¤ÖáÓë¶ÌÖáÖ®±ÈΪ
2
£¬¹ýÅ×ÎïÏßC1µÄ½¹µãF×÷Çãб½ÇΪ
¦Ð
4
µÄÖ±Ïßl£¬½»ÍÖÔ²CÓÚÒ»µãP£¨µãPÔÚxÖáÉÏ·½£©£¬½»Å×ÎïÏßC1ÓÚÒ»µãQ£¨µãQÔÚxÖáÏ·½£©£®
£¨¢ñ£©ÇóµãPºÍQµÄ×ø±ê£»
£¨¢ò£©½«µãQÑØÖ±ÏßlÏòÉÏÒƶ¯µ½µãQ¡ä£¬Ê¹|QQ¡ä|=4a£¬Çó¹ýPºÍQ¡äÇÒÖÐÐÄÔÚÔ­µã£¬¶Ô³ÆÖáÊÇ×ø±êÖáµÄË«ÇúÏߵķ½³Ì£»
£¨¢ó£©ÉèµãA£¨t£¬0£©£¨³£Êýt£¾4£©£¬µ±aÔÚ±ÕÇø¼ä¡²1£¬2¡³Äڱ仯ʱ£¬Çó¡÷APQÃæ»ýµÄ×î´óÖµ£¬²¢ÇóÏàÓ¦aµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸