已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.
(1)若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)3成立,求数列{an}的通项公式;
(2)对任意正整数n,从集合{a1,a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1,a2,…,an一起恰好是1至Sn全体正整数组成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求数列{an}的通项公式.
(1)an=1或an=2n-1(2)a1=1,a2=3,an=3n-1
【解析】(1)设无穷等差数列{an}的公差为d,因为Sn3=(Sn)3对任意正整数n都成立,所以分别取n=1,n=2时,则有:
因为数列{an}的各项均为正整数,所以d≥0.
可得a1=1,d=0或d=2.(4分)
当a1=1,d=0时,an=1,Sn3=(Sn)3成立;
当a1=1,d=2时,Sn=n2,所以Sn3=(Sn)3.
因此,共有2个无穷等差数列满足条件,通项公式为an=1或an=2n-1.(6分)
(2)(ⅰ)记An={1,2,…,Sn},显然a1=S1=1.(7分)
对于S2=a1+a2=1+a2,有A2={1,2,…,Sn}={1,a2,1+a2,|1-a2|}={1,2,3,4},
故1+a2=4,所以a2=3.(9分)
(ⅱ)由题意可知,集合{a1,a2,…,an}按上述规则,共产生Sn个正整数.(10分)
而集合{a1,a2,…,an,an+1}按上述规则产生的Sn+1个正整数中,除1,2,…,Sn这Sn个正整数外,还有an-1,an+1+i,|an+1-i|(i=1,2,…,Sn),共2Sn+1个数.
所以,Sn+1=Sn+(2Sn+1)=3Sn+1.(12分)
又Sn+1+=3 ,所以Sn=·3n-1-=·3n-.(14分)
当n≥2时,an=Sn-Sn-1=·3n--=3n-1.(15分)
而a1=1也满足an=3n-1.
所以,数列{an}的通项公式是an=3n-1.(16分)
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷4练习卷(解析版) 题型:选择题
如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )
A.有无数条 B.有2条 C.有1条 D.不存在
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷2练习卷(解析版) 题型:选择题
将函数f(x)=sin(2x+θ) 的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则φ的值可以是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷1练习卷(解析版) 题型:填空题
已知集合A={x|x2-x≤0},函数f(x)=2-x(x∈A)的值域为B,则(∁RA)∩B=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷1练习卷(解析版) 题型:选择题
关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且x2-x1=15,则a=( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练D组练习卷(解析版) 题型:解答题
已知△ABC中,角A,B,C的对边分别为a,b,c,且acos B=ccos B+bcos C.
(1)求角B的大小;
(2)设向量m=(cos A,cos 2A),n=(12,-5),求当m·n取最大值时,tan C的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题
已知数列{an}的前三项分别为a1=5,a2=6,a3=8,且数列{an}的前n项和Sn满足Sn+m=(S2n+S2m)-(n-m)2,其中m,n为任意正整数.
(1)求数列{an}的通项公式及前n项和Sn;
(2)求满足-an+33=k2的所有正整数k,n.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练填空题押题练F组练习卷(解析版) 题型:填空题
如图是一个算法的流程图,则最后输出的S=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练填空题押题练C组练习卷(解析版) 题型:填空题
下图是一个算法的流程图,最后输出的S=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com