精英家教网 > 高中数学 > 题目详情

已知函数的定义域为R,若存在常数,对任意,有,则称

函数.给出下列函数:

是定义在R上的奇函数,且满足对一切实数

.其中是函数的序号为(

A①②④ B②③④ C①④⑤ D①②⑤

 

【答案】

C

【解析】

试题分析:由函数的定义域为R,若存在常数,对任意,有,则称

函数.因为,所存在m使得恒成立,所以正确.成立,则.显然不存在这样的m.所以不正确. 存在常数,对任意都有成立,当x=0时不成立.,所以不正确.显然存在m,所以正确. 是定义在R上的奇函数,且满足对一切实数

,令等于零时,即符合要求.综上所以①④⑤正确.故选C.

考点:1.新定义的问题.2.不等式恒成立问题.3.函数的最值.4.假命题的证明方法.5.特值法的思想.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)>0.
(I)试判断并证明f(x)的奇偶性;
(II)试判断并证明f(x)的单调性;
(III)若f(cos2θ-3)+f(4m-2mcosθ)>0对所有的θ∈[0,
π2
]
均成立,求实数m 的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年浙江省温州中学高二下学期期中考试数学(文) 题型:解答题

已知函数的定义域为R,且当时,恒成立,
(1)求证:的图象关于点对称;
(2)求函数图象的一个对称点。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城市高三下学期期初考试文科数学试卷(解析版) 题型:选择题

已知函数的定义域为R,当时,,且对任意的实数R,等式成立.若数列满足,且

(N*),则的值为(     )

A.4024             B.4023             C.4022             D.4021

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三10月月考理科数学卷 题型:选择题

已知函数的定义域为R,它的反函数为,如果互为反函数,且,则的值为(      )

A、           B、0            C、           D、

 

查看答案和解析>>

科目:高中数学 来源:2012届雅安中学高二第二学期期中考试数学试题 题型:选择题

已知函数的定义域为R,当时,,且对任意的实数R,等式成立.若数列满足,且 (N*),则的值为(    ) 

A. 4016         B.4017             C.4018       D.4019

 

查看答案和解析>>

同步练习册答案