精英家教网 > 高中数学 > 题目详情
轴截面是直角三角形的圆锥的底面半径为r,则其轴截面面积为________.
r2
由于圆锥的轴截面是等腰三角形,且顶角为90°,∴S轴截面=·2r·r=r2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正方形ABCD边长为2,EF分别是ABCD的中点,将正方形沿EF折成直二面角(如图),M为矩形AEFD内一点,如果∠MBE=∠MBCMB和平面BCF所成角的正切值为,那么点M到直线EF的距离为(    )
A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两个相同的正四棱锥组成如下图1所示的几何体,可放入棱长为1的正方体(图2)内,使正四棱锥的底面ABCD与正方体的某一个面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(   )
A.1个B.2个C.3个D.无穷多个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图,在正三棱锥P-ABC中,D是侧棱PA的中点,O是底面ABC的中心,则下列四个结论中正确的是(     )
A.OA∥平面PBCB.OD⊥PAC.OD⊥ACD.PA=2OD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以一个等边三角形底边所在的直线为对称轴旋转一周所得的几何体是(   )
A.一个圆柱B.一个圆锥C.两个圆锥D.一个圆台

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图, 正方体ABCD-A1B1C1D1的棱长为6, 动点M在棱A1B1上. (1) 当M为A1B1的中点时, 求CM与平面DC1所成角的正弦值;

(2) 当A1M=A1B1时, 求点C到平面D1DM的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

ABC是正三角形,线段EADC都垂直于平面ABC.设EA=AB=2a,DC=a,且FBE的中点,如图.

(1)求证:DF∥平面ABC;
(2)求证:AFBD;
(3)求平面BDF与平面ABC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列结论不正确的是       (填序号).
①各个面都是三角形的几何体是三棱锥
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥
④圆锥的顶点与底面圆周上的任意一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体的对角线长是4,有一条棱长为1,那么该长方体的最大体积为
A.B.C.D.

查看答案和解析>>

同步练习册答案