精英家教网 > 高中数学 > 题目详情

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:

房屋面积(m2)

115

110

80

135

105

销售价格(万元)

24.8

21.6

18.4

29.2

22

(1)画出数据对应的散点图;

(2)求线性回归方程,并在散点图中加上回归直线;

(3)根据(2)的结果估计当房屋面积为150 m2时的销售价格.

 

【答案】

(1)数据对应的散点图如图所示.

(2)所求回归直线方程为=0.1962x+1.8166.

(3)销售价格的估计值为=0.1962×150+1.8166=31.2466(万元).

【解析】

试题分析:(1)数据对应的散点图如图所示.

(2)=109,=23.2, (xi)2=1570,

 (xi)(yi)=308,

设所求的回归直线方程为=bx+a,

则b=≈0.1962,

a=-b=23.2-109×≈1.8166,

故所求回归直线方程为=0.1962x+1.8166.

(3)据(2),当x=150 m2时,销售价格的估计值为

=0.1962×150+1.8166=31.2466(万元).

考点:回归直线方程

点评:中档题,确定回归直线方程,关键是准确计算等相关元素,对计算能力要求较高。高考题中,常常以填空题形式出现。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
精英家教网
(1)求线性回归方程;
(2)据(1)的结果估计当房屋面积为150m2时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
房屋面积(m2 115 110 80 135 105
销售价格(万元) 24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图;    
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150m2时的销售价格.
(参考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
?
a
=
.
y
-
?
b
.
x
5
i=1
x2i=60975
5
i=1
xiyi=115×24.8+110×21.6+80×18.4+135×29.2+105×22=12952

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
房屋面积m2 110 90 80 100 120
销售价格(万元) 33 31 28 34 39
(1)画出数据对应的散点图;
(2)求线性回归方程;
(3)据(2)的结果估计当房屋面积为150m2时的销售价格.
(提示:
?
b
=
n
i=1
xiyi-n
.
x
 
.
y
n
i=1
xi2-n
.
x
2
?
a
=
.
y
-
?
b
.
x
,1102+902+802+1002+1202=51000,110×33+90×31+80×28+100×34+120×39=16740)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y(万元)和房屋的面积x(m2)的数据,若由资料可知y对x呈线性相关关系.试求:
x 80 90 100 110 120
y 48 52 63 72 80
(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为150m2时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:

房屋面积(m2)

115

110

80

135

105

销售价格(万元)

24.8

21.6

18.4

29.2

22

(1)画出数据对应的散点图;

(2)求线性回归方程,并在散点图中加上回归直线;

(3)据(2)的结果估计当房屋面积为150 m2时的销售价格.

查看答案和解析>>

同步练习册答案