(本小题满分14分)设不等式组
所表示的平面区域为
,记
内的格点(格点即横坐标和纵坐标均为整数的点)个数为![]()
(1)求
的值及
的表达式;(2)记
,试比较
的大小;若对于一切的正整数
,总有
成立,求实数
的取值范围;
(3)设
为数列
的前
项的和,其中
,问是否存在正整数
,使
成立?若存在,求出正整数
;若不存在,说明理由.
⑴
;(2)
;
(3)存在正整数
使
成立.
【解析】(1)因为
,所以当
时,
取值为1,2,3,…,
共有
个格点,当
时,
取值为1,2,3,…,
共有
个格点,从而可知
.
(2)由于
,然后根据
研究数列{
}的单调性,从而确定出其最值.问题到此基本得以解决.
(3)在(2)的基础上,可知
,然后将
代入
,再化简整理可得
,然后再根据t=1和t>1两种情况进行讨论,从而确定是否存在n,t的值,使
成立.
解:⑴
------------------2
当
时,
取值为1,2,3,…,
共有
个格点
当
时,
取值为1,2,3,…,
共有
个格点
∴
-
------------------4分
(2)解:由
则![]()
![]()
-------------------5分
当
时,![]()
当
时,
-------------------6分
∴
时,![]()
时,![]()
时,![]()
∴
中的最大值为
-------------------8分
要使
对于一切的正整数
恒成立,只需![]()
∴
-------------------9分
(3)解:
--------------10分
将
代入
,化简得,
(﹡)--------------11分
若
时
,显然
-------------------12分
若
时
(﹡)式
化简为
不可能成立-------------------13
综上,存在正整数
使
成立. - --------------14分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com