精英家教网 > 高中数学 > 题目详情
已知菱形ABCD的边长为10,∠ABC=60°,将这个菱形沿对角线BD折成120°的二面角,则A、C两点的距离是(  )
分析:首先可得翻折后图形中,∠AOC为二面角的平面角,进而利用余弦定理可求AC的长.
解答:解:设AC∩BD=0,
∵ABCD是菱形
∴AC⊥BD
∴AO⊥BD,CO⊥BD
∴翻折后图形中,∠AOC为二面角的平面角
∴∠AOC=120°
∵菱形ABCD的边长为10,∠ABC=60°
∴AO=CO=5
在△AOC中,AO=CO=5,∠AOC=120°
AC=
52+52-2×5×5×cos120°
=5
3

故选D.
点评:本题以平面图形为载体,考查平面图形的翻折,解题的关键是确定翻折后的面面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使BD=3
2
,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的边长为2,对角线AC与BD交于点O,且∠ABC=120°,M为BC的中点.将此菱形沿对角线BD折成二面角A-BD-C.
( I)求证:面AOC⊥面BCD;
( II)若二面角A-BD-C为60°时,求直线AM与面AOC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知菱形ABCD的边长为2,将其沿对角线BD折成直二面角A-BD-C.
(1)证明:AC⊥BD;
(2)若二面角A-BC-D的平面角的正切值为2,求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知菱形ABCD的边长为2,∠BAD=60°,S为平面ABCD外一点,△SAD为正三角形,SB=
6
,M、N分别为SB、SC的中点.
(Ⅰ)求证:平面SAD⊥平面ABCD;
(Ⅱ)求二面角A-SB-C的余弦值;
(Ⅲ)求四棱锥M-ABN的体积.

查看答案和解析>>

同步练习册答案