精英家教网 > 高中数学 > 题目详情
(2008•虹口区二模)集合A={x||x|≤4,x∈R},B{x||x-3|≤a,x∈R},且A?B,则实数a的取值范围是
(-∞,1]
(-∞,1]
分析:利用绝对值不等式的解法求得集合A={x||x|≤4,x∈R}={x|-4≤x≤4,x∈R},B={x||x-3|≤a,a∈R}={x|3-a≤x≤3+a,x∈R},根据A?B,即可求得实数a的取值范围.
解答:解:集合A={x||x|≤4,x∈R}={x|-4≤x≤4,x∈R},B={x||x-3|≤a,a∈R}={x|3-a≤x≤3+a,x∈R},
若A?B,
3+a≤4
3-a≥-4
∴a≤1.则a的取值范围是:a≤1.
故答案为(-∞,1]
点评:本题的考点是集合关系中的参数取值问题,主要考查绝对值不等式的解法和集合包含关系的运算等基础知识,特别是对子集的理解是考试的重点,也是易错点,同时考查了运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•虹口区二模)若复数(1+ai)•(a2+i)是纯虚数,则实数a=
0或1
0或1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)等差数列{an}中,S20=30,则a3+a18=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)当x>2时,使不等式x+
1x-2
≥a恒成立的实数a的取值范围是
(-∞,4]
(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)过点A(0,3),被圆(x-1)2+y2=4截得的弦长为2
3
的直线方程是
x=0或y=-
4
3
x+3
x=0或y=-
4
3
x+3

查看答案和解析>>

同步练习册答案