精英家教网 > 高中数学 > 题目详情
若三点A(3,3)、B(a,0)、C(0,b)(ab≠0)共线,则
 
分析:利用向量的坐标公式:终点坐标减去始点坐标,求出向量的坐标;据三点共线则它们确定的向量共线,利用向量共线的充要条件列出方程得到a,b的关系.
解答:解:∵点A(3,3)、B(a,0)、C(0,b)(ab≠0)
AB
=(a-3,-3)   ,
AC
=(-3,b-3)

∵点A(3,3)、B(a,0)、C(0,b)(ab≠0)共线
AB
AC

∴(a-3)×(b-3)=-3×(-3)
所以ab-3a-3b=0
故答案为:ab-3a-3b=0
点评:本题考查利用点的坐标求向量的坐标、向量共线的充要条件、向量共线与三点共线的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若三点A(-2,3),B(3,-2),C(
12
,a)共线,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若三点A(3,3)、B(a,0)、C(0,b)(ab≠0)共线,则 ________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若三点A(3,3)、B(a,0)、C(0,b)(ab≠0)共线,则 ______.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年辽宁省本溪市普通高中模块数学试卷(必修2)(解析版) 题型:填空题

若三点A(3,3)、B(a,0)、C(0,b)(ab≠0)共线,则    

查看答案和解析>>

同步练习册答案