精英家教网 > 高中数学 > 题目详情
已知a>0,函数f(x)=x3-a,x∈[0,+∞),设x1>0,记曲线y=f(x)在点M(x1,f(x1))处的切线l.
(1)求l的方程;
(2)设l与x轴的交点是(x2,0),证明x2a
13
分析:(1)欲求在点(1,1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.
(2)先在直线的方程中令y=0得到的x2值,欲证明x2a
1
3
.利用作差比较法即可.即利用因式分解的方法证x2-a
1
3
≥0即可.
解答:解:(1)解:f'(x)=3x2(x>0).∵切线l经过曲线f(x)=x3-a上的点M(x1,f(x1)),
又∵切线l的斜率为k=f'(x1)=3x12
据点斜式,得y-f(x1)=f'(x1)(x-x1),
整理,得y=3x12•x-2x12-a,x1>0.
因此直线l的方程为y=3x12x-2x13-a(x1>0);
(2)证明:∵l与x轴交点为(x2,0),∴3x12x2-2x12-a=0,∵x1>0,a>0,
x2=
1
3
(2x1+
a
x
2
1
)

由于x2-a
1
3
=
1
3
x
2
1
(2
x
3
1
+a-3
x
2
1
a
1
3
)=
1
3
x
2
1
(x1-a
1
3
)2(2x1+a
1
3
)

且x1>0,a>0,∴2x1+a
1
3
>0

(x1-a
1
3
)2≥0
,∴x2-a
1
3
≥0

当且仅当x1=a
1
3
,上式取“=”号.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)求函数f(x)的单调区间;(2)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=lnx-ax2,x>0.(f(x)的图象连续不断)
(Ⅰ)当a=
1
8

①求f(x)的单调区间;
②证明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均属于区间[1,3]的α,β,且β-α≥1,使f(α)=f(β),证明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
|x-2a|
x+2a
在区间[1,4]上的最大值等于
1
2
,则a的值为
 

查看答案和解析>>

同步练习册答案