精英家教网 > 高中数学 > 题目详情

【题目】设函数fx,已知对任意的a[13],若kRk0),恒有fx1fx2),则k的最小值是_____

【答案】24

【解析】

由已知可得是偶函数,且在为增函数,要使恒成立,只需,而,只需,结合范围,即可求解.

x0,可得﹣x0f(﹣x)=2x+x2fx),

同样可得x0时,f(﹣x)=fx),且f0)=1

可得fx)为偶函数,

画出fx)的图象,可得fx)在[0+∞)递增,

fx1fx2),可得f|x1|f|x2|),即有|x1|≥|x2|

x12x22≥0,即(x1x2)(x1+x2≥0

kRk0a0),

可得x1x2,即x1x20,可得x1+x2≤0恒成立,

可得aa0,即有k

由任意的a[13],可得k24

k的最小值为24

故答案为:24.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义上的函数,则下列选项不正确的是(

A.函数的值域为

B.关于的方程个不相等的实数根

C.时,函数的图象与轴围成封闭图形的面积为

D.存在,使得不等式能成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.

(1)当.

①求数列的通项公式;

②若,求数列的前项的和

(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解高一新生是否愿意参加军训,随机调查了80名新生,得到如下2×2列联表

愿意

不愿意

合计

x

5

M

y

z

40

合计

N

25

80

1)写出表中xyzMN的值,并判断是否有99.9%的把握认为愿意参加军训与性别有关;

2)在被调查的不愿意参加军训的学生中,随机抽出3人,记这3人中男生的人数为ξ,求ξ的分布列和数学期望.

参考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc分别为ABC三个内角ABC的对边,2bcosA=acosC+ccosA

1)求角A的大小;

2)若a=3ABC的周长为8,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,延长交椭圆于点的周长为8.

(1)求的离心率及方程;

(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某销售公司在当地两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了两家超市往年同期各50天的该食品销售记录,得到如下数据:

销售件数

8

9

10

11

频数

20

40

20

20

以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.

(1)求的分布列;

(2)以销售食品利润的期望为决策依据,在之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx)=bx1),其中a≠0b≠0

1)若ab,讨论Fx)=fx)﹣gx)的单调区间;

2)已知函数fx)的曲线与函数gx)的曲线有两个交点,设两个交点的横坐标分别为x1x2,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的最大值和最小值;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案