精英家教网 > 高中数学 > 题目详情
已知直线l过两直线3x-y-10=0和x+y-2=0的交点,且直线l与点A(1,3)和点B(5,2)的距离相等,求直线l的方程.
【答案】分析:解方程组求得两直线3x-y-10=0和x+y-2=0的交点M的坐标,直线l平行于AB时,用点斜式求直线方程.当直线l经过AB的中点N(3,)时,由MN垂直于x轴,求得直线l的方程.
解答:解:由 解得 ,故两直线3x-y-10=0和x+y-2=0的交点M(3,-1).
当直线l平行于AB时,斜率等于KAB==-
故直线l的方程为 y+1=-(x-3),即 x+4y+1=0.
当直线l经过AB的中点N(3,)时,由于此时直线l经过M、N两点,且MN垂直于x轴,
故直线l的方程为 x=3.
综上,直线l的方程为 x+4y+1=0或x=3.
点评:本题主要考查用点斜式求直线方程的方法,体现了分类讨论的数学思想,注意考虑直线过AB的中点N的情况,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l过两直线3x-y-10=0和x+y-2=0的交点,且直线l与点A(1,3)和点B(5,2)的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知直线l:y=2x与抛物线C:y=
14
x2交于A(xA,yA)、O(0,0)两点,过点O与直线l垂直的直线交抛物线C于点B(xA,yB).如图所示.
(1)求抛物线C的焦点坐标;
(2)求经过A、B两点的直线与y轴交点M的坐标;
(3)过抛物线x2=2py的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点A、B的直线AB是否恒过定点,如果是,指出此定点,并证明你的结论;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l过两直线3x-y-10=0和x+y-2=0的交点,且直线l与点A(1,3)和点B(5,2)的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过两条直线3x+4y-5=0,2x-3y+8=0的交点,且与A(2,3),B(-4,5)两点的距离相等,求直线l的方程.

查看答案和解析>>

同步练习册答案