精英家教网 > 高中数学 > 题目详情

函数数学公式,若f(1)+f(a)=1,则a的值为________.


分析:先解出f(1)的值,再由f(1)+f(a)=1得出f(a)=0,后由ex-1>0得到f(a)=cos(π•a)=0,解出a的值
解答:∵f(1)=e1-1=1,
∴由f(1)+f(a)=1解出f(a)=0
又∵ex-1>0∴f(a)=cos(π•a),
∴cos(π•a)=0且-1<a<0,
∴a=
答案为
点评:本题考查分段函数知识,以及函数值域问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、对于函数y=f(x),定义域为D,以下命题正确的是(只要求写出命题的序号)

①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f'(2)=0,则y=f(x)在x=2处一定有极大值或极小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,则y=f(x)图象关于直线x=2对称.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于函数y=f(x),定义域为D,以下命题正确的是(只要求写出命题的序号) ______;
①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f'(2)=0,则y=f(x)在x=2处一定有极大值或极小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,则y=f(x)图象关于直线x=2对称.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省温州市八校联考高三(上)入学数学试卷(理科)(解析版) 题型:填空题

对于函数y=f(x),定义域为D,以下命题正确的是(只要求写出命题的序号)    
①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f'(2)=0,则y=f(x)在x=2处一定有极大值或极小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,则y=f(x)图象关于直线x=2对称.

查看答案和解析>>

科目:高中数学 来源:2010年北京市首师大附中高三大练习数学试卷08(理科)(解析版) 题型:填空题

对于函数y=f(x),定义域为D,以下命题正确的是(只要求写出命题的序号)    
①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f'(2)=0,则y=f(x)在x=2处一定有极大值或极小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,则y=f(x)图象关于直线x=2对称.

查看答案和解析>>

科目:高中数学 来源:2010年北京市首师大附中高三大练习数学试卷09(文科)(解析版) 题型:填空题

对于函数y=f(x),定义域为D,以下命题正确的是(只要求写出命题的序号)    
①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f'(2)=0,则y=f(x)在x=2处一定有极大值或极小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,则y=f(x)图象关于直线x=2对称.

查看答案和解析>>

同步练习册答案