精英家教网 > 高中数学 > 题目详情
12、对于函数y=f(x),定义域为D,以下命题正确的是(只要求写出命题的序号)

①若f(-1)=f(1),f(-2)=f(2),则y=f(x)是D上的偶函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f'(2)=0,则y=f(x)在x=2处一定有极大值或极小值;
④若?x∈D,都有f(x+1)=f(-x+3)成立,则y=f(x)图象关于直线x=2对称.
分析:对于①利用函数奇偶性定义进行判断,本题判断属于以偏概全;
对于②利用函数的单调性进行判断,本题判断属于以偏概全;
对于③利用函数极值存在的条件进行判断,本题判断属于以偏概全;
对于④利用函数图象关于对称轴对称的性质进行判断.
解答:解:对于①,由于f(-1)=f(1),f(-2)=f(2),是y=f(x)在D上的两个函数值,不能保证任意两点之间的对称性,故不对;
对于②f(-1)<f(0)<f(1)<f(2)只是列出了部分函数值大小的关系,无法判断整个区间上的函数值大小,故D不对;
对于③,极值存在的条件是该点处的导数为0,且该点两侧函数的单调性相反,故据③的条件,无法确定在x=2处一定有极大值或极小值;
对于④,由于x+1,-x+3到直线x=2的距离相等,又有已知,其函数值也相等,故y=f(x)图象关于直线x=2对称,④正确.
故答案为④
点评:本题考点是函数单调性的判断与证明,考查函数的奇偶性与函数的单调性的判断,以及极值存在的条件,函数图象的对称性,本题 涉及到的知识点较多,是考查基本知识的一个质量较高的题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,且y=f(x+
π
2
)
为偶函数,对于函数y=f(x)有下列几种描述:
①y=f(x)是周期函数②x=π是它的一条对称轴;③(-π,0)是它图象的一个对称中心;
④当x=
π
2
时,它一定取最大值;其中描述正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;
②函数y=log2x2与函数y=2log2x是相等函数;
③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0 时,有2x>x2成立;
④对于函数y=f(x),x∈[a,b],若有f(a)•f(b)<0,则f(x)在(a,b)内有零点.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,则x1+x2=5.
其中正确的序号是
③⑤
③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•和平区一模)函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a,已知y=f(x)无零点,设F(x)=f2(x)+f2(-x),则对于函数y=F(x)有如下四种说法:①定义域是[-b,b];②最小值是0;③是偶函数;④在定义域内单调递增.其中正确的说法是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)对于函数y=f(x)的图象上任意两点A(a,f(a)),B(b,f(b)),设点C分
AB
的比为λ(λ>0).若函数为f(x)=x2(x>0),则直线AB必在曲线AB的上方,且由图象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函数为f(x)=log2010x,请分析该函数的图象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-3,3]上的函数y=f(x)满足f(-x)+f(x)=0,对于函数y=f(x)的图象上任意两点(x1,f(x1)),(x2,f(x2))都有(x1-x2)•[f(x1)-f(x2)]<0.若实数a,b满足f(a2-2a)+f(2b-b2)≤0,则点(a,b)所在区域的面积为(  )
A、8B、4C、2D、1

查看答案和解析>>

同步练习册答案