精英家教网 > 高中数学 > 题目详情
(2010•上海模拟)对于函数y=f(x)的图象上任意两点A(a,f(a)),B(b,f(b)),设点C分
AB
的比为λ(λ>0).若函数为f(x)=x2(x>0),则直线AB必在曲线AB的上方,且由图象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函数为f(x)=log2010x,请分析该函数的图象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
分析:根据函数f(x)=x2(x>0)的图象可知,此函数的图象是下凹的,由图象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
,再根据对数函数的图象的特征,即可类比得到相应的不等式.
解答:解:∵函数f(x)=x2(x>0)上任意两点A(a,a2)、B(b,b2),线段AB在弧AB的上方,
设点C分
AB
的比为λ(λ>0),则由图象中可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2

据此我们从图象可以看出:函数f(x)=x2(x>0)的图象是向下凹的,
类比对数函数可知,对数函数f(x)=log2010x的图象是上凸的,
∴类比上述不等式,可以得到的不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

故答案为:
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
点评:本题的考点是类比推理,考查函数图象性质的类比,解题的关键是分析图象的凹凸性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•上海模拟)若等差数列{an}中,
lim
n→∞
n(an+n)
Sn+n
=1
,则公差d=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)一个正三棱柱和它的三视图如图所示,则这个正三棱柱的表面积为
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)以下有四个命题:
①一个等差数列{an}中,若存在ak+1>ak>O(k∈N),则对于任意自然数n>k,都有an>0;
②一个等比数列{an}中,若存在ak<0,ak+1<O(k∈N),则对于任意n∈N,都有an<0;
③一个等差数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<O;
④一个等比数列{an}中,若存在自然数k,使ak•ak+1<0,则对于任意n∈N,都有an.an+1<0;
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)已知复数:z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数.
(1)求k的值;
(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)设向量
s
=(x+1,y),
t
=(y,x-1)(x,y∈R)
,满足|
s
|+|
t
 |=2
2
,已知两定点A(1,0),B(-1,0),动点P(x,y),
(1)求动点P(x,y)的轨迹C的方程;
(2)已知直线m:y=x+t交轨迹C于两点M,N,(A,B在直线MN两侧),求四边形MANB的面积的最大值.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),求证:线段OG的长为定值.

查看答案和解析>>

同步练习册答案