精英家教网 > 高中数学 > 题目详情
双曲线
y2
4
-
x2
16
=1
的渐近线方程是
y=±
1
2
x
y=±
1
2
x
分析:令双曲线方程右边为0,即可得到双曲线的渐近线方程.
解答:解:由
y2
4
-
x2
16
=0
可得y=±
1
2
x
,即双曲线
y2
4
-
x2
16
=1
的渐近线方程是y=±
1
2
x

故答案为:y=±
1
2
x
点评:本题考查双曲线的渐近线方程,利用双曲线方程右边为0,得到双曲线的渐近线方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的渐近线方程为y=±
1
2
x
,两顶点之间的距离为4,双曲线的标准方程为
x2
4
-y2=1
y2
4
-
x2
16
=1
x2
4
-y2=1
y2
4
-
x2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

与双曲线x2-4y2=4有共同的渐近线,并且经过点(2,
5
)的双曲线方程是
y2
4
-
x2
16
=1
y2
4
-
x2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
y2
4
-
x2
9
=1
的渐近线的方程是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线
y2
4
-
x2
16
=1
的渐近线方程是______.

查看答案和解析>>

同步练习册答案