精英家教网 > 高中数学 > 题目详情
设z=
1
2
+
3
2
i
(i是虚数单位),则z+2z2+3z3+4z4+5z5+6z6=(  )
A.6zB.6z2C.6
.
z
D.-6z
∵z=
1
2
+
3
2
i
=cos
π
3
+isin
π
3

z+2z2+3z3+4z4+5z5+6z6=cos
π
3
+isin
π
3
+2cos
3
+2sin
3
i+3cosπ
+3sinπi+4cos
3
+4sin
3
i+5cos
3
+5sin
3
i+6cos2π+6sin2πi
=6(
1
2
-
3
2
i
)=6
.
z

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

w=-
1
2
+
3
2
i
,若z=
w
.
w
2
,则
.
z
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=
1
2
+
3
2
i
,那么z+z2+z3+z4+z5+z6=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=
1
2
+
3
2
i
(i是虚数单位),则z+2z2+3z3+4z4+5z5+6z6=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设z=
1
2
+
3
2
i
,那么z+z2+z3+z4+z5+z6=______.

查看答案和解析>>

同步练习册答案