精英家教网 > 高中数学 > 题目详情
已知正三棱锥S-ABC的高SO=h,斜高SM=n,求经过SO的中点且平行于底面的截面△A1B1C1的面积.
分析:根据所给的正三棱锥的高和斜高,利用勾股定理做出三棱锥的底面面积,经过SO的中点且平行于底面的截面与底面是相似的三角形,根据相似三角形的面积之比等于相似比的平方,得到结果.
解答:解:设底面正三角形的边长为a,
在RT△SOM中SO=h,SM=n,
∴OM=
n2-l2

又MO=
3
6
a,即a=
6
3
n2-l2

s△ABC=
3
4
a2=3
3
(n2-l2)

∴截面面积为
3
4
3
(n2-l2)
点评:本题考查三棱锥的结构特征,考查三棱锥的高与斜高,考查勾股定理,考查相似三角形的面积之比等于相似比的平方,是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正三棱锥S-ABC的侧棱与底面边长相等,E,F分别为SC,AB的中点,则异面直线EF与SA所成角的大小是
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南充三模)已知正三棱锥S-ABC的侧棱与底面边长相等,E、F分别为侧棱SC底边AB的中点,则异面直线EF与SA所成角的大小是(  )

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

已知正三棱锥S-ABC中,高SO==3,底面边长为,过棱AB作截面ABD交侧棱SC于点D,截面与底面所成二面角为q,当q为何值时,SC与平面ABD垂直?

查看答案和解析>>

科目:高中数学 来源:2012年四川省南充市高考数学三模试卷(理科)(解析版) 题型:选择题

已知正三棱锥S-ABC的侧棱与底面边长相等,E、F分别为侧棱SC底边AB的中点,则异面直线EF与SA所成角的大小是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年四川省南充市高考数学三模试卷(文科)(解析版) 题型:选择题

已知正三棱锥S-ABC的侧棱与底面边长相等,E、F分别为侧棱SC底边AB的中点,则异面直线EF与SA所成角的大小是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案