精英家教网 > 高中数学 > 题目详情
若{an}是等差数列,首项a1>0,a2013+a2014>0,a2013•a2014<0,则使数列{an}的前n项和Sn>0成立的最大自然数n是(  )
分析:由已知等差数列{an}满足:首项a1>0,a2013+a2014>0,a2013•a2014<0,可知:等差数列{an}是单调递减数列,且a2013>0,a2014<0,a2015<0,公差d<0,进而得到a1+a4026=a2013+a2014>0,a1+a4027=a2013+a2015=2a2014<0.即可判断出.
解答:解:∵等差数列{an}满足:首项a1>0,a2013+a2014>0,a2013•a2014<0,
∴等差数列{an}是单调递减数列,且a2013>0,a2014<0,a2015<0,公差d<0.
∴a1+a4026=a2013+a2014>0,a1+a4027=a2013+a2015=2a2014<0.
∴S4026=
4026(a1+a4026)
2
>0,S4027=4027•a2014<0.
∴使数列{an}的前n项和Sn>0成立的最大自然数n是4026.
故选A.
点评:本题考查了等差数列的单调性、等差数列的性质和前n项和公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).
(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;
(2)若{an}是等比数列,求{bn}的前项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)对数列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,则称{an}为k阶递归数列.给出下列三个结论:
①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为an=n2,则{an}为3阶递归数列.
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}是等差数列,首项 a1>0,a2011+a2012>0,a2011•a2012<0,则使前n项和Sn最大的自然数n是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)记数列{an}的前n项和为Sn,所有奇数项之和为S′,所有偶数项之和为S″.
(1)若{an}是等差数列,项数n为偶数,首项a1=1,公差d=
3
2
,且S″-S′=15,求Sn
(2)若无穷数列{an}满足条件:①Sn+1=1-
3
5
Sn
(n∈N*),②S′=S″.求{an}的通项;
(3)若{an}是等差数列,首项a1>0,公差d∈N*,且S′=36,S″=27,请写出所有满足条件的数列.

查看答案和解析>>

同步练习册答案