精英家教网 > 高中数学 > 题目详情
16.若x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,则z=y-2|x|的最大值为(  )
A.-8B.-4C.1D.2

分析 由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$作出可行域如图,

当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;
当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.
∴z=y-2|x|的最大值为2.
故选:D.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求解方程组$\left\{\begin{array}{l}{3x+5y+6=0}\\{4x=3y-7}\end{array}\right.$ 的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=a(bn-1)(a≠0,b≠0且b≠1),证明:{an}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a=(3,-4)$,$\overrightarrow b=(x,y)$,若$\overrightarrow a$∥$\overrightarrow b$,则(  )
A.3x-4y=0B.3x+4y=0C.4x+3y=0D.4x-3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.倡导全民阅读是传承文明、更新知识、提高民族素质的基本途径.某调查公司随机调查了1000位成年人一周的平均阅读时间(单位:小时),他们的阅读时间都在[0,20]内,将调查结果按如下方式分成五组:第一组[0,4),第二组[4,8),第三组[8,12),第四组[12,16),第五组[16,20],并绘制了频率分布直方图,如图.假设每周平均阅读时间不少于12小时的人,称为“阅读达人”.
(Ⅰ)求这1000人中“阅读达人”的人数;
(Ⅱ)从阅读时间为[8,20]的成年人中按分层抽样抽取9人做个性研究.从这9人中随机抽取2人,求这2人都不是“阅读达人”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}是公比为2的等比数列,且满足$\frac{a_4}{a_2}-{a_3}=0$,则a4的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinx=$\frac{4}{5}$,其中0≤x≤$\frac{π}{2}$.
(1)求cosx的值;
(2)求$\frac{cos(-x)}{sin(\frac{π}{2}-x)-sin(2π-x)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知loga2=m,loga3=n,则a2m+n=(  )
A.6B.7C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=1,且4an+2an+1-9anan+1=1(n∈N*
(1)求a2,a3,a4
(2)由此猜想{an}的通项公式,并用数学归纳法给出证明.

查看答案和解析>>

同步练习册答案