精英家教网 > 高中数学 > 题目详情

已知点M(2数学公式,1)在椭圆C:数学公式+数学公式=1(a>b>0)上,椭圆的两个焦点F1(-2数学公式,0)和F2(2数学公式,0),斜率为-1的直线l与椭圆C相交于不同的P、Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点B的坐标为(0,2),是否存在直线l,使△BPQ为以PQ为底边的等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.

解:(Ⅰ)依题意知,半焦距c=2,由点M(2,1)在椭圆C上,得|MF2|=1,|MF1|=7;∴2a=|MF1|+|MF2|=8;∴a=4,∴b2=a2-c2=4;所以,椭圆C的方程为:+=1.
(Ⅱ)设PQ的中点为R,直线l的方程为y=-x+m;
,得5x2-8mx+4m2-16=0(*);
要使l与椭圆C相交于不同的P、Q两点,则有△>0;
∴△=(-8m)2-4×5(4m2-16)=16(-m2+20)>0,
化简,得|m|<2. ①
由(*)知:xR==m,yR=-xR+m=m.
且|BP|=|BQ|,所以BR⊥PQ,即kRQ•(-1)=-1;
所以==1,解得m=-
因为<2,所以m=-适合①.
所以存在满足条件的直线l;y=-x-
分析:(Ⅰ)由半焦距c=2,点M(2,1)在椭圆C上,可得|MF2|,|MF1|;由|MF1|+|MF2|=2a,可得a的值,从而得椭圆C的方程.
(Ⅱ)设PQ的中点为R,直线l的方程为y=-x+m;由,得5x2-8mx+4m2-16=0(*);要使l与椭圆C相交于不同的P、Q两点,则有△>0,可得|m|<2 ①,由(*)和中点坐标知xR,yR;且|BP|=|BQ|,得BR⊥PQ,即得kRQ的值;从而解得m的值,得满足条件的直线l.
点评:本题考查了直线与椭圆标准方程的综合应用问题,解题时要弄清题中所给的条件,灵活运用椭圆的定义,根与系数的关系式,以及中点坐标公式来进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(2
3
,1)在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上,椭圆的两个焦点F1(-2
3
,0)和F2(2
3
,0),斜率为-1的直线l与椭圆C相交于不同的P、Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点B的坐标为(0,2),是否存在直线l,使△BPQ为以PQ为底边的等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,点P(x,y)满足约束条件:
7x-5y-23≤0
x+7y-11≤0
4x+y+10≥0

(1)在给定的坐标系中画出满足约束条件的可行域 (用阴影表示,并注明边界的交点);
(2)设u=
y+7
x+4
,求u的取值范围;
(3)已知两点M(2,1),O(0,0),求
OM
OP
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M(2
3
,1)在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上,椭圆的两个焦点F1(-2
3
,0)和F2(2
3
,0),斜率为-1的直线l与椭圆C相交于不同的P、Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点B的坐标为(0,2),是否存在直线l,使△BPQ为以PQ为底边的等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年山东省青岛市平度一中高二(上)第二次段考数学试卷(文科) (解析版) 题型:解答题

已知点M(2,1)在椭圆C:+=1(a>b>0)上,椭圆的两个焦点F1(-2,0)和F2(2,0),斜率为-1的直线l与椭圆C相交于不同的P、Q两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点B的坐标为(0,2),是否存在直线l,使△BPQ为以PQ为底边的等腰三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案