【题目】如图,已知△
中,∠
=90°,
,且
=1,
=2,△
绕
旋转至
,使点
与点
之间的距离
=
.
(1)求证:
⊥平面
;
(2)求二面角
的大小;
(3)求异面直线
与
所成的角的余弦值.
![]()
【答案】(1)见详解;(2)60°;(3)
.
【解析】
(1)∵CD⊥AB,∴CD⊥A′D,CD⊥DB,∴CD⊥平面A′BD,
∴CD⊥BA′.又在△A′DB中,A′D=1,DB=2,A′B=![]()
,∴∠BA′D=90°,
即BA′⊥A′D,∴BA′⊥平面A′CD.
![]()
(2)∵CD⊥DB,CD⊥A′D,∴∠BDA′是二面角
A′—CD—B的平面角.又Rt△A′BD中,A′D=1,BD=2,
∴∠A′DB=60°,即 二面角A′—CD—B为60°.
(3)过A′作A′E∥BD,在平面A′BD中作DE⊥A′E于E,
连CE,则∠CA′E为A′C与BD所成角.
∵CD⊥平面A′BD,DE⊥A′E,∴A′E⊥CE.
∵EA′∥AB,∠A′DB=60°,∴∠DA′E=60°,又A′D=1,∠DEA′=90°,∴A′E=![]()
又∵在Rt△ACB中,AC=
=
∴A′C=AC=![]()
∴cos∠CA′E=
=
=
,即A′C与BD所成角的余弦值为
.
科目:高中数学 来源: 题型:
【题目】已知函数
的图象与x轴交点为
,与此交点距离最小的最高点坐标为
.
(Ⅰ)求函数
的表达式;
(Ⅱ)若函数
满足方程
,求方程在
内的所有实数根之和;
(Ⅲ)把函数
的图像的周期扩大为原来的两倍,然后向右平移
个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数
的图像.若对任意的
,方程
在区间
上至多有一个解,求正数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
),且满足
.
(1)求a的值;
(2)设函数
,
(
),若存在
,
,使得
成立,求实数t的取值范围;
(3)若存在实数m,使得关于x的方程
恰有4个不同的正根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系
的坐标平面
内,若函数
的图象与
轴围成一个封闭区域
,将区域
沿
轴的正方向上移4个单位,得到几何体如图一.现有一个与之等高的圆柱如图二,其底面积与区域
面积相等,则此圆柱的体积为__________.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的部分图象如图所示,点A,B,C在图象
上,
,
,并且
轴
![]()
(1)求
和
的值及点B的坐标;
(2)若
,且
,求
的值;
(3)将函数
的图象上各点的纵坐标变为原来的
倍,横坐标不变,再将所得图象各点的横坐标变为原来的
倍,纵坐标不变,最后将所得图象向右平移
个单位,得到
的图象,若关于x的方程
在区间
上有两个不同解,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com