精英家教网 > 高中数学 > 题目详情

函数y=f(x)的图象与数学公式的图象关于直线y=x对称,那么f(2x-x2)的单调减区间是________.

(0,1]
分析:由函数f(x)的图象与函数 的图象关于直线y=x对称,可得
可得 ,先求出该函数的定义域(0,2),然后根据复合函数的单调性可求
解答:∵函数f(x)的图象与函数 的图象关于直线y=x对称,


∵①的定义域为(0,2)
令t=2x-x2,则t=2x-x2在0(0,1]单调递增,在[[1,2)单调递减
而函数 在(0,+∞)单调递减
由符合函数的单调性可知函数的单调减区间是:(0,1]
故答案为:(0,1].
点评:本题主要考查了互为反函数的函数的解析式的求解,由对数函数与二次函数复合的函数的单调区间的求解,此类问题的容易出错点是:漏掉对函数定义域的求解,造成单调区间扩大为(-∞,1],[1,+∞).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(2,
2
2
),试求出此函数的解析式,并作出图象,判断奇偶性、单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+alnxx
,(a∈R).
(1)若函数f(x)在x=1处取得极值,求实数a的值;
(2)在(1)条件下,若直线y=kx与函数y=f(x)的图象相切,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=lnx-2的图象按向量
α
=(-1,2)平移得到函数y=f(x)的图象.
(1)若x>0,证明;f(x)>
2x
x+2

(2不等式
1
2
x2≤f(x2)+m2-2bm-3对b∈[-1,1],x∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)设函数y=f(x)=x(x-a)(x-b)(a、b∈R).
(Ⅰ)若a≠b,ab≠0,过两点(0,0)、(a,0)的中点作与x轴垂直的直线,此直线与函数y=f(x)的图象交于点P(x0,f(x0)),求证:函数y=f(x)在点P处的切 线过点(
4
3
3
,0);
(Ⅱ)若a=b(a≠0),且当x∈[0,|a|+1]时f(x)<2a2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,给出关于f(x)的下列命题:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函数y=f(x)在x=2取到极小值;
②函数f(x)在[0,1]是减函数,在[1,2]是增函数;
③当1<a<2时,函数y=f(x)-a有4个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0.
其中所有正确命题是
①③④
①③④
(写出正确命题的序号).

查看答案和解析>>

同步练习册答案