精英家教网 > 高中数学 > 题目详情
已知f(x)=x2+bx+2,x∈R,若方程f(x)+|x2-1|=2在(0,2)上有两个解x1,x2,则b的取值范围为(  )
分析:由f(x)=x2+bx+2,x∈R,f(x)+|x2-1|=2,知x2+bx+|x2-1|=0,设0<x1<x2<2,构造函数H(x)=x2+bx+|x2-1|=
bx+1,|x|≤1
2x2+bx-1,|x|>1
,由此能求出b的取值范围.
解答:解:∵f(x)=x2+bx+2,x∈R,f(x)+|x2-1|=2,
∴x2+bx+|x2-1|=0,
不妨设0<x1<x2<2,
令H(x)=x2+bx+|x2-1|=
bx+1,|x|≤1
2x2+bx-1,|x|>1

因为H(x)在(0,1]上是单调函数,
所以H(x)=0在(0,1]上至多有一个解.
若x1,x2∈(1,2),即x1、x2就是2x2+bx-1=0的解,
x1x2=-
1
2
<0,与题设矛盾.
因此,x1∈(0,1],x2∈(1,2).由H(x1)=0得b=-
1
x1
,所以b≤-1;
由H(x2)=0得b=
1
x2
-2x2,所以-
7
2
<b<-1.
故选C.
点评:本题考查复合函数的知识,考查二次函数的值域意识,考查方程的根与方程系数之间的关系,求取值范围关键要确定出字母满足的不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案