精英家教网 > 高中数学 > 题目详情
如图,已知点C的坐标是(2,2)过点C的直线CA与X轴交于点A,过点C且与直线CA垂直的直线CB与Y轴交于点B,设点M是线段AB的中点,则点M的轨迹方程为
x+y-2=0
x+y-2=0
分析:由题意可知:点M既是Rt△ABC的斜边AB的中点,又是Rt△OAB的斜边AB的中点,可得|OM|=|CM|,利用两点间的距离公式即可得出.
解答:解:由题意可知:点M既是Rt△ABC的斜边AB的中点,又是Rt△OAB的斜边AB的中点.
∴|OM|=|CM|,
设M(x,y),则
x2+y2
=
(x-2)2+(y-2)2

化为x+y-2=0.
故答案为x+y-2=0.
点评:本题考查了直角三角形的斜边的中线的性质和两点间的距离公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C的方程为x2+
y2
2
=1
,点P(a,b)的坐标满足a2+
b2
2
≤1
,过点P的直线l与椭圆交于A、B两点,点Q为线段AB的中点,求:
(1)点Q的轨迹方程;
(2)点Q的轨迹与坐标轴的交点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆C的圆心坐标为(1,-1),且过点M(2,-1).
(1)求圆C的标准方程;
(2)过点N(-1,-2)且斜率为1的直线l与圆C相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C的顶点在原点,焦点F在x轴上,抛物线上的点A到F的距离为2,且A的横坐标为1.过A点作抛物线C的两条动弦AD、AE,且AD、AE的斜率满足kAD•kAE=2.
(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知点C的坐标是(2,2),过点C的直线CA与x轴交于点A,过点C且与直线CA垂直的

直线CB与y轴交于点B.设点M是线段AB的中点,求点M的轨迹方程.

查看答案和解析>>

同步练习册答案