精英家教网 > 高中数学 > 题目详情
某几何体的三视图,如图所示,则这个几何体是(  )
A、三棱锥B、三棱柱
C、四棱锥D、四棱柱
考点:简单空间图形的三视图
专题:空间位置关系与距离
分析:根据几何体的三视图,得出该几何体是什么图形.
解答: 解:根据该几何体的三视图,得出该几何体是平放的三棱柱,如图所示;

故选:B.
点评:本题考查了空间几何体的三视图的应用问题,解题时应根据几何体的三视图,得出几何体表示什么图形,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列有关命题的说法正确的有(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
②“x=1”是“x2-3x+2=0”的充分不必要条件;
③“x2-1>0”是“x<-1”的充分而不必要条件;
④命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

F1,F2是双曲线
x2
9
-
y2
7
=1的两个焦点,A为双曲线上一点,且∠AF1F2=45°,则△AF1F2的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a0+a1x+a2x2+…+anxn,对任意正整数n,都有f(0)=1,f(1)=n2+1.
(1)求数列{an}的通项an
(2)记Pn=a2+a4+a8+…+a2n(1≤n≤10),若Tn=Pn-n2-5n-5,求数列{Tn}中的最小项和最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用三角函数定义证明:
cosα-sinα+1
cosα+sinα+1
=
1-sinα
cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
x2-x-1,x≥2或x≤-1
1,-1<x<2
,则函数g(x)=f(x)-x的零点为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
①函数y=-tanx在区间(-
π
2
π
2
)上是减函数;
②不等式|2x-1|>3的解集是{x|x>2};
③m=
2
是两直线2x+my+1=0与mx+y-1=0平行的充分不必要条件;
④函数y=x|x-2|的图象与直线y=
1
2
有三个交点.
其中正确结论的序号是
 
(把所有正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的焦点在x轴上,离心率为
3
2
,且椭圆被直线y=x+2截得的线段长为
16
2
5
,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a≠1,求函数f(x)=x-
1
2
ax2-ln(x+1)的极值点.

查看答案和解析>>

同步练习册答案