精英家教网 > 高中数学 > 题目详情

设函数f(x)=(a+1)x2+3ax+1是偶函数,则实数a=________.

0
分析:利用偶函数的定义建立方程f(-x)=f(x),然后求解a.或者利用函数奇偶性的运算性质来判断.
解答:方法1:(定义法),因为函数f(x)=(a+1)x2+3ax+1是偶函数,所以f(-x)=f(x),
即(a+1)x2-3ax+1=(a+1)x2+3ax+1,即-3ax=3ax,所以a=0.
方法2:(性质法),因为函数f(x)=(a+1)x2+3ax+1是偶函数,y=x是奇函数,所以要使函数f(x)=(a+1)x2+3ax+1是偶函数,则必有a=0.
故答案为:0.
点评:本题考查了函数奇偶性的应用,函数奇偶性的应用主要是通过定义,构建一个条件方程f(-x)=f(x)或f(-x)=-f(x),或者是利用函数奇偶性的运算性质来判断的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T•f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=logax(a>0且a≠1),若f(x1•x2•…•x2009)=8,则f(x12)+f(x22)+…+f(x20082)+f(x20092)的值等于
16
16

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通三模)设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0,b,c∈R.
(1)若f′(
13
)
=0,求函数f(x)的单调增区间;
(2)求证:当0≤x≤1时,|f'(x)|≤max{f'(0),f'(1)}.(注:max{a,b}表示a,b中的最大值)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)设函数f(x)=x3-4x+a(0<a<2)有三个零点x1、x2、x3,且x1<x2<x3,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0.b,c∈R.
(1)计算f′(
1
3
);
(2)若x=
1
3
为函数f(x)的一个极值点,求f(x)的单调区间;
(3)设M表示f′(0)与f′(1)两个数中的最大值,求证:当0≤x≤1时,|f′(x)|≤M.

查看答案和解析>>

同步练习册答案