精英家教网 > 高中数学 > 题目详情

“函数”是“可导函数在点处取到极值”的  条件。 (    )

A.充分不必要       B.必要不充分        C.充要             D.既不充分也不必要

 

【答案】

B

【解析】

试题分析:导数为0时,此点左右两边的导数符号相反,才一定是极值,由此可以得出结论解:对于可导函数f(x)=x3,f'(x)=3x2,f'(0)=0,不能推出f(x)在x=0取极值,故导数为0时不一定取到极值,而对于任意的函数,当可导函数在某点处取到极值时,此点处的导数一定为0.故选B.

考点:极值

点评:本题考查函数取得极值的条件,属基础题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知函数f(x)与g(x)是定义在R上的两个可导函数,若f(x)、g(x)满足f′(x)=g′(x),则下列说法正确的是
②④
(填序号).
①f(x)=g(x);                   ②f(x)-g(x)为常数函数;
③f(x)+g(x)为常数函数;         ④f(x)和g(x)的图象没有公共点或重合.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=kx+b,其中k,b(k≠0)是常数,其图象是一条直线,称这个函数为线性函数.对于非线性可导函数f(x),在点x0附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f′(x0)(x-x0).利用这一方法,m=
3.998
的近似代替值(  )
A、大于m
B、小于m
C、等于m
D、与m的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是连续可导函数,并且
lim
△x→∞
f(x0+△x)-f(x0)
2△x
=2,则f′(x0)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(m,n)上的可导函数f(x)的导数为f'(x),若当x∈[a,b]?(m,n)时,有|f'(x)|≤1,则称函数f(x)为[a,b]上的平缓函数.下面给出四个结论:
①y=cosx是任何闭区间上的平缓函数;
②y=x2+lnx是[
1
2
,1]
上的平缓函数;
③若f(x)=
1
3
x3-mx2-3m2x+1是[0,
1
2
]上的平缓函数,则实数m的取值范围是[-
3
3
1
2
]

④若y=f(x)是[a,b]上的平缓函数,则有|f(a)-f(b)|≤|a-b|.
这些结论中正确的是
①③④
①③④
(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=kx+b,其中k,b(k≠0)是常数,其图象是一条直线,称这个函数为线性函数,对于非线性可导函数f(x),在点x0附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x-x0),利用这一方法,m=
3.996
的近似代替值是
1.999
1.999

查看答案和解析>>

同步练习册答案