精英家教网 > 高中数学 > 题目详情
设函数f(x)是连续可导函数,并且
lim
△x→∞
f(x0+△x)-f(x0)
2△x
=2,则f′(x0)=(  )
分析:把极限符号后面代数式的分母中的2拿到极限符号前面,代入f′(x0)后整理即可得到答案.
解答:解:由
lim
△x→∞
f(x0+△x)-f(x0)
2△x
=
1
2
lim
△x→∞
f(x0+△x)-f(x0)
△x
=
1
2
f(x0)
=2.
∴f′(x0)=4.
故选C.
点评:本题考查了变化的快慢与变化率,考查了导数的概念及其运算,关键是对倒数概念的理解,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
ex             (x<0)
a+x        (x≥0)
当a为何值时,函数f(x)是连续的.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
①若f(x)为减函数,则-f(x)为增函数;
②若f(0)<f(4),则函数f(x)不是R上的减函数;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
⑤若函数f(x)=
(2-m)x+2m(x<1)
(m-1)|x+1|(x≥1)
在R上是增函数,则m的取值范围是1<m<2;
其中正确命题的序号有
①②④
①②④
(把所有正确命题的番号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)
2
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是
③⑤
③⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)
2
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)-f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.
其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案