已知两点,点是圆上任意一点,则面积的最小值是( ).
A. | B. | C. | D. |
A
解析试题分析:先由A和B的坐标,确定出直线AB的解析式,再把圆的方程化为标准方程,找出圆心坐标和半径,利用点到直线的距离公式求出圆心到直线AB的距离d,用d-r求出圆上到直线AB距离最小的点到直线AB的距离,即为所求的C点,三角形ABC边AB边上的高即为d-r,故利用两点间的距离公式求出线段AB的长度,利用三角形的面积公式即可求出此时三角形的面积,即为所求面积的最小值.
由于两点,则根据两点的距离公式得到|AB|=,而求解的三角形面积的最小值即为高的最小值,那么圆心(1,0)到直线AB:y-x=2的距离,半径为1,故圆上点到直线AB距离的最小值为d-1,那么利用三角形的面积公式得到为,故答案为
考点:此题考查了直线与圆的位置关系
点评:
科目:高中数学 来源: 题型:单选题
如果圆x2+y2+Dx+Ey+F=0与x轴切于原点, 那么( )
A.D=0,E≠0, F≠0; | B.E=F=0,D≠0; |
C.D="F=0," E≠0; | D.D=E=0,F≠0; |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com