设函数f(x)在区间[a,b]上有定义,将区间[a,b]等分成几个小区间,每个小区间的长度为Δx(Δx=),在每个小区间上取一点,依次为x1,x2,…,xi,…,xn.作和Sn=f(x1)Δx+f(x2)Δx+…+f(xi)Δx+…+f(xn)Δx,如果Δx无限趋近于0(亦即n趋向于+∞)时,Sn无限趋近于常数S,那么称该常数S为函数f(x)在区间[a,b]上的_________,记为S=_________,其中f(x)称为_________,[a,b]称为_________,a称为_________,b称为_________.
科目:高中数学 来源:2013届新课标高三配套第四次月考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
查看答案和解析>>
科目:高中数学 来源:高考真题 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com