(本小题满分12分)
已知函数
(1)若是的极值点,求在上的最大值
(2)若函数是R上的单调递增函数,求实数的的取值范围.
(1)当时,函数有最大值为15. (2)。
解析试题分析:(1)根据可求出a的值,从而再求出极值,与区间的端点值比较可求出最大值.
(2) 函数是R上的单调递增函数可转化为在R上恒成立问题来解决.
(1)解:,,且当时有极值.
可得: ---------------------- 1分
因为 所以 -------- 2分
则 ------------------------- 3分
当时,,
如表所示:
由表可知:1 3 5 — 0 + -1 单调递减 极小值 单调递增 15
当时,函数有最大值为15. ------------------------------ 6分
(2)解: 为在上的单调递增函数
则 所以 ≥0在R上恒成立,
因此 &nbs
科目:高中数学 来源: 题型:解答题
(本题满分12分)
设点P在曲线上,从原点向A(2,4)移动,如果直线OP,曲线及直线x=2所围成的面积分别记为、。
(Ⅰ)当时,求点P的坐标;
(Ⅱ)当有最小值时,求点P的坐标和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
已知函数,其中.
(1)当时,求函数在处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数在处取得最小值,试求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列的前项和为,函数,
(其中均为常数,且),当时,函数取得极小值.
均在函数的图像上(其中是的导函数).
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数.
(Ⅰ) 求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数g(x)=x3 +x2在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个,
使得成立,试求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com