精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)若的极值点,求上的最大值
(2)若函数是R上的单调递增函数,求实数的的取值范围.

(1)当时,函数有最大值为15. (2)

解析试题分析:(1)根据可求出a的值,从而再求出极值,与区间的端点值比较可求出最大值.
(2) 函数是R上的单调递增函数可转化为在R上恒成立问题来解决.
(1)解:,且当时有极值.
可得:               ---------------------- 1分
因为             所以          -------- 2分
          -------------------------  3分
时,
如表所示:


1

3

5

 

0
+
 

-1
单调递减
极小值
单调递增
15
由表可知:
时,函数有最大值为15.      ------------------------------ 6分
(2)解:  为在上的单调递增函数
       所以  ≥0在R上恒成立,
因此            &nbs

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设点P在曲线上,从原点向A(2,4)移动,如果直线OP,曲线及直线x=2所围成的面积分别记为

(Ⅰ)当时,求点P的坐标;
(Ⅱ)当有最小值时,求点P的坐标和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数,其中.
(1)当时,求函数处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数处取得最小值,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列的前项和为,函数,
(其中均为常数,且),当时,函数取得极小值.
均在函数的图像上(其中的导函数).
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)过曲线C:外的点A(1,0)作曲线C的切线恰有两条,
(Ⅰ)求满足的等量关系;
(Ⅱ)若存在,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知为实数,
(Ⅰ)若a=2,求的单调递增区间;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,(),曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ) 求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数g(x)=x3 +x2在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个
使得成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数的图象关于直线对称;
证明:当时,
(3)如果,证明

查看答案和解析>>

同步练习册答案